JatinkInnovision's picture
Add new SentenceTransformer model
4ef3c65 verified
metadata
language:
  - en
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:557850
  - loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l-v2.0
widget:
  - source_sentence: >-
      A construction worker is standing on a crane placing a large arm on top of
      a stature in progress.
    sentences:
      - A man is playing with his camera.
      - A person standing
      - Nobody is standing
  - source_sentence: A boy in red slides down an inflatable ride.
    sentences:
      - a baby smiling
      - A boy is playing on an inflatable ride.
      - A boy pierces a knife through an inflatable ride.
  - source_sentence: A man in a black shirt is playing a guitar.
    sentences:
      - A group of women are selling their wares
      - The man is wearing black.
      - The man is wearing a blue shirt.
  - source_sentence: >-
      A man with a large power drill standing next to his daughter with a vacuum
      cleaner hose.
    sentences:
      - A man holding a drill stands next to a girl holding a vacuum hose.
      - Kids ride an amusement ride.
      - The man and girl are painting the walls.
  - source_sentence: A middle-aged man works under the engine of a train on rail tracks.
    sentences:
      - A guy is working on a train.
      - Two young asian men are squatting.
      - A guy is driving to work.
datasets:
  - sentence-transformers/all-nli
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
model-index:
  - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: all nli test
          type: all-nli-test
        metrics:
          - type: cosine_accuracy
            value: 0.9558178241791496
            name: Cosine Accuracy

SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l-v2.0 on the all-nli dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-l-v2.0
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("JatinkInnovision/snowflake-arctic-embed-l-v2.0_all-nli")
# Run inference
sentences = [
    'A middle-aged man works under the engine of a train on rail tracks.',
    'A guy is working on a train.',
    'A guy is driving to work.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9558

Training Details

Training Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 557,850 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 10.9 tokens
    • max: 52 tokens
    • min: 6 tokens
    • mean: 13.62 tokens
    • max: 42 tokens
    • min: 5 tokens
    • mean: 14.76 tokens
    • max: 55 tokens
  • Samples:
    anchor positive negative
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. A person is at a diner, ordering an omelette.
    Children smiling and waving at camera There are children present The kids are frowning
    A boy is jumping on skateboard in the middle of a red bridge. The boy does a skateboarding trick. The boy skates down the sidewalk.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 6,584 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 20.31 tokens
    • max: 83 tokens
    • min: 5 tokens
    • mean: 10.71 tokens
    • max: 35 tokens
    • min: 5 tokens
    • mean: 11.39 tokens
    • max: 32 tokens
  • Samples:
    anchor positive negative
    Two women are embracing while holding to go packages. Two woman are holding packages. The men are fighting outside a deli.
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. Two kids in numbered jerseys wash their hands. Two kids in jackets walk to school.
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles A man selling donuts to a customer. A woman drinks her coffee in a small cafe.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 50
  • per_device_eval_batch_size: 50
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 50
  • per_device_eval_batch_size: 50
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss all-nli-test_cosine_accuracy
0.0090 100 1.8838 0.6502 -
0.0179 200 1.2991 0.6177 -
0.0269 300 1.2721 0.6417 -
0.0359 400 1.2265 0.7053 -
0.0448 500 1.0111 0.7147 -
0.0538 600 1.0491 0.7457 -
0.0627 700 1.0186 0.7922 -
0.0717 800 1.135 0.8940 -
0.0807 900 1.0747 0.7007 -
0.0896 1000 0.9373 0.7298 -
0.0986 1100 0.9572 0.6809 -
0.1076 1200 1.1316 0.7260 -
0.1165 1300 0.9188 0.7085 -
0.1255 1400 0.9554 0.6876 -
0.1344 1500 0.9494 0.7492 -
0.1434 1600 0.811 0.7234 -
0.1524 1700 0.7766 0.6744 -
0.1613 1800 0.9317 0.7178 -
0.1703 1900 0.9148 0.6960 -
0.1793 2000 0.8643 0.6642 -
0.1882 2100 0.7604 0.6425 -
0.1972 2200 0.776 0.6347 -
0.2061 2300 0.8286 0.6581 -
0.2151 2400 0.8946 0.5866 -
0.2241 2500 0.8507 0.6845 -
0.2330 2600 0.7917 0.6091 -
0.2420 2700 0.8192 0.7073 -
0.2510 2800 0.8818 0.6584 -
0.2599 2900 0.8261 0.6112 -
0.2689 3000 0.8017 0.6883 -
0.2779 3100 0.8147 0.6450 -
0.2868 3200 0.8297 0.6086 -
0.2958 3300 0.7516 0.5857 -
0.3047 3400 0.8628 0.6061 -
0.3137 3500 0.7758 0.5751 -
0.3227 3600 0.7773 0.6022 -
0.3316 3700 0.7559 0.5446 -
0.3406 3800 0.796 0.5842 -
0.3496 3900 0.8295 0.5822 -
0.3585 4000 0.7292 0.5821 -
0.3675 4100 0.7475 0.6358 -
0.3764 4200 0.7916 0.5688 -
0.3854 4300 0.7214 0.5653 -
0.3944 4400 0.704 0.5564 -
0.4033 4500 0.7817 0.5876 -
0.4123 4600 0.7549 0.5358 -
0.4213 4700 0.7206 0.5785 -
0.4302 4800 0.7462 0.5568 -
0.4392 4900 0.665 0.5765 -
0.4481 5000 0.7743 0.5303 -
0.4571 5100 0.7055 0.5733 -
0.4661 5200 0.7004 0.6280 -
0.4750 5300 0.7021 0.5444 -
0.4840 5400 0.6858 0.5787 -
0.4930 5500 0.7007 0.6124 -
0.5019 5600 0.6722 0.5705 -
0.5109 5700 0.7124 0.5440 -
0.5199 5800 0.6657 0.5262 -
0.5288 5900 0.6784 0.5400 -
0.5378 6000 0.6644 0.5093 -
0.5467 6100 0.7195 0.5453 -
0.5557 6200 0.6958 0.5216 -
0.5647 6300 0.7202 0.5250 -
0.5736 6400 0.6921 0.5089 -
0.5826 6500 0.6926 0.5207 -
0.5916 6600 0.714 0.5084 -
0.6005 6700 0.6605 0.4943 -
0.6095 6800 0.7222 0.5058 -
0.6184 6900 0.7171 0.4950 -
0.6274 7000 0.6344 0.5110 -
0.6364 7100 0.7057 0.5197 -
0.6453 7200 0.6895 0.5096 -
0.6543 7300 0.7226 0.4819 -
0.6633 7400 0.6725 0.4780 -
0.6722 7500 0.7469 0.5145 -
0.6812 7600 0.7016 0.4969 -
0.6901 7700 0.6655 0.4965 -
0.6991 7800 0.7281 0.4913 -
0.7081 7900 0.6748 0.5121 -
0.7170 8000 0.6505 0.5207 -
0.7260 8100 0.6594 0.4823 -
0.7350 8200 0.7042 0.4903 -
0.7439 8300 0.6995 0.4630 -
0.7529 8400 0.634 0.4217 -
0.7619 8500 0.3772 0.3684 -
0.7708 8600 0.3416 0.3585 -
0.7798 8700 0.3113 0.3471 -
0.7887 8800 0.2793 0.3379 -
0.7977 8900 0.2577 0.3349 -
0.8067 9000 0.249 0.3320 -
0.8156 9100 0.2191 0.3290 -
0.8246 9200 0.2492 0.3255 -
0.8336 9300 0.2464 0.3258 -
0.8425 9400 0.2288 0.3247 -
0.8515 9500 0.2132 0.3248 -
0.8604 9600 0.2173 0.3259 -
0.8694 9700 0.2008 0.3223 -
0.8784 9800 0.2016 0.3219 -
0.8873 9900 0.1962 0.3195 -
0.8963 10000 0.1952 0.3185 -
0.9053 10100 0.1959 0.3158 -
0.9142 10200 0.2002 0.3138 -
0.9232 10300 0.1882 0.3150 -
0.9322 10400 0.1856 0.3124 -
0.9411 10500 0.1971 0.3143 -
0.9501 10600 0.1918 0.3137 -
0.9590 10700 0.1825 0.3147 -
0.9680 10800 0.1762 0.3155 -
0.9770 10900 0.1778 0.3139 -
0.9859 11000 0.1659 0.3138 -
0.9949 11100 0.1848 0.3131 -
1.0 11157 - - 0.9558

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}