layoutlmv3-base-ner / README.md
Jacques2207's picture
End of training
d88d405
|
raw
history blame
6.05 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
model-index:
  - name: layoutlmv3-base-ner
    results: []

layoutlmv3-base-ner

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4071
  • Footer: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186}
  • Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373}
  • Able: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100}
  • Aption: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148}
  • Ext: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566}
  • Icture: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270}
  • Itle: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45}
  • Ootnote: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8}
  • Overall Precision: 0.0
  • Overall Recall: 0.0
  • Overall F1: 0.0
  • Overall Accuracy: 0.6399

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Footer Header Able Aption Ext Icture Itle Ootnote Overall Precision Overall Recall Overall F1 Overall Accuracy
1.1724 1.0 1950 1.4537 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} 0.0 0.0 0.0 0.6399
1.2004 2.0 3900 1.4094 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} 0.0 0.0 0.0 0.6399
1.2026 3.0 5850 1.4038 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} 0.0 0.0 0.0 0.6399
1.2107 4.0 7800 1.4217 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} 0.0 0.0 0.0 0.6399
1.1836 5.0 9750 1.4071 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} 0.0 0.0 0.0 0.6399

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.12.1
  • Datasets 2.9.0
  • Tokenizers 0.13.2