|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: layoutlmv3-base-ner |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-base-ner |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4071 |
|
- Footer: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} |
|
- Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} |
|
- Able: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} |
|
- Aption: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} |
|
- Ext: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} |
|
- Icture: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} |
|
- Itle: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} |
|
- Ootnote: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} |
|
- Overall Precision: 0.0 |
|
- Overall Recall: 0.0 |
|
- Overall F1: 0.0 |
|
- Overall Accuracy: 0.6399 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Footer | Header | Able | Aption | Ext | Icture | Itle | Ootnote | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:----------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 1.1724 | 1.0 | 1950 | 1.4537 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0 | 0.0 | 0.0 | 0.6399 | |
|
| 1.2004 | 2.0 | 3900 | 1.4094 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0 | 0.0 | 0.0 | 0.6399 | |
|
| 1.2026 | 3.0 | 5850 | 1.4038 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0 | 0.0 | 0.0 | 0.6399 | |
|
| 1.2107 | 4.0 | 7800 | 1.4217 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0 | 0.0 | 0.0 | 0.6399 | |
|
| 1.1836 | 5.0 | 9750 | 1.4071 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0 | 0.0 | 0.0 | 0.6399 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|