metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- hf-internal-testing/librispeech_asr_dummy
metrics:
- wer
model-index:
- name: wft-test-model
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: hf-internal-testing/librispeech_asr_dummy
type: hf-internal-testing/librispeech_asr_dummy
metrics:
- type: wer
value: 4.724409448818897
name: Wer
wft-test-model
This model is a fine-tuned version of openai/whisper-tiny on the hf-internal-testing/librispeech_asr_dummy dataset. It achieves the following results on the evaluation set:
- Loss: 0.1218
- Wer: 4.7244
- Cer: 100.7102
- Decode Time: 0.5595
- Wer Time: 0.0060
- Cer Time: 0.0027
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Time | Wer Time | Cer Time |
---|---|---|---|---|---|---|---|---|
2.4038 | 0.1 | 10 | 1.9871 | 299.6063 | 116.5483 | 0.5542 | 0.0112 | 0.0038 |
1.2202 | 1.01 | 20 | 1.1610 | 172.0472 | 91.6903 | 0.5178 | 0.0055 | 0.0028 |
0.8765 | 1.11 | 30 | 0.8079 | 31.8898 | 56.1080 | 0.4854 | 0.0051 | 0.0024 |
0.4415 | 2.02 | 40 | 0.6279 | 25.9843 | 82.5284 | 0.5218 | 0.0060 | 0.0028 |
0.4307 | 2.12 | 50 | 0.4509 | 16.9291 | 98.2955 | 0.5377 | 0.0056 | 0.0030 |
0.2363 | 3.03 | 60 | 0.2952 | 9.4488 | 102.9119 | 0.5310 | 0.0048 | 0.0027 |
0.2245 | 3.13 | 70 | 0.2046 | 7.4803 | 96.3778 | 0.5429 | 0.0056 | 0.0029 |
0.1053 | 4.04 | 80 | 0.1700 | 5.5118 | 96.4489 | 0.5306 | 0.0067 | 0.0028 |
0.0731 | 4.14 | 90 | 0.1320 | 4.7244 | 97.1591 | 0.5509 | 0.0050 | 0.0026 |
0.0782 | 5.05 | 100 | 0.1218 | 4.7244 | 100.7102 | 0.5595 | 0.0060 | 0.0027 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.5.0
- Datasets 3.0.2
- Tokenizers 0.20.1