JacobLinCool's picture
Upload README.md with huggingface_hub
3b11400 verified
|
raw
history blame
3.07 kB
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - wft
  - whisper
  - automatic-speech-recognition
  - audio
  - speech
  - generated_from_trainer
datasets:
  - hf-internal-testing/librispeech_asr_dummy
metrics:
  - wer
model-index:
  - name: wft-test-model
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: hf-internal-testing/librispeech_asr_dummy
          type: hf-internal-testing/librispeech_asr_dummy
        metrics:
          - type: wer
            value: 4.724409448818897
            name: Wer

wft-test-model

This model is a fine-tuned version of openai/whisper-tiny on the hf-internal-testing/librispeech_asr_dummy dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1218
  • Wer: 4.7244
  • Cer: 100.7102
  • Decode Time: 0.5595
  • Wer Time: 0.0060
  • Cer Time: 0.0027

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss Wer Cer Decode Time Wer Time Cer Time
2.4038 0.1 10 1.9871 299.6063 116.5483 0.5542 0.0112 0.0038
1.2202 1.01 20 1.1610 172.0472 91.6903 0.5178 0.0055 0.0028
0.8765 1.11 30 0.8079 31.8898 56.1080 0.4854 0.0051 0.0024
0.4415 2.02 40 0.6279 25.9843 82.5284 0.5218 0.0060 0.0028
0.4307 2.12 50 0.4509 16.9291 98.2955 0.5377 0.0056 0.0030
0.2363 3.03 60 0.2952 9.4488 102.9119 0.5310 0.0048 0.0027
0.2245 3.13 70 0.2046 7.4803 96.3778 0.5429 0.0056 0.0029
0.1053 4.04 80 0.1700 5.5118 96.4489 0.5306 0.0067 0.0028
0.0731 4.14 90 0.1320 4.7244 97.1591 0.5509 0.0050 0.0026
0.0782 5.05 100 0.1218 4.7244 100.7102 0.5595 0.0060 0.0027

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.5.0
  • Datasets 3.0.2
  • Tokenizers 0.20.1