All_updated_file / convert_fsdp_to_hf.py
JackyChunKit's picture
Create convert_fsdp_to_hf.py
8171e62 verified
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import torch
import torch.distributed.tensor # Add this import for DTensor support
import fire
from glob import glob
from collections import defaultdict
def main(fsdp_checkpoint_path, huggingface_model_path, output_path):
state_dict = defaultdict(list)
world_size = 8
for rank in range(world_size):
filepath = f"{fsdp_checkpoint_path}/model_world_size_{world_size}_rank_{rank}.pt"
print('loading', filepath)
# Set weights_only=False to handle DTensors properly
this_state_dict = torch.load(filepath, weights_only=False)
for key, value in this_state_dict.items():
state_dict[key].append(value.to_local())
for key in state_dict:
state_dict[key] = torch.cat(state_dict[key], dim=0)
config = AutoConfig.from_pretrained(huggingface_model_path)
model = AutoModelForCausalLM.from_config(config)
model.load_state_dict(state_dict)
model.save_pretrained(output_path)
tokenizer = AutoTokenizer.from_pretrained(huggingface_model_path)
tokenizer.save_pretrained(output_path)
if __name__ == "__main__":
fire.Fire(main)