JH-debug commited on
Commit
80f151a
1 Parent(s): 5aa17d8

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Taekyoon/llama2-ko-7b-test",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 32,
20
+ "pad_token_id": 0,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-06,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.41.2",
28
+ "use_cache": false,
29
+ "vocab_size": 46337
30
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.41.2"
7
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step504
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdeb94488723b03f5c411ec5e6c07cbd10621133acaef8a20e84207017bbabd9
3
+ size 4941075864
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:137635a3e7fb708aa1735150c84b200cec86fe9dc12ad02a8e50caeb425dbeef
3
+ size 4991424816
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f030046b71c95b34ca4b942b73eb324a964595629ab2107fe8a20c9b8889782d
3
+ size 4857206904
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a49bc536f49dfde44e43ab4f756076885e7b0fc6ed97c135aad6421a6cef309
3
+ size 4857206904
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:467712da7fb933065ebe5c84a3117ee80ddde8268430957d641c3bd482cd68ed
3
+ size 4857206904
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c80fbe037e942db48083772d12eee8276fdd7134d7ab8414fab6550568b94f8
3
+ size 2919369528
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 27423457280
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00004-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00004-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00005-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00005-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00005-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00005-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00006-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00006-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00006-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
296
+ "model.norm.weight": "model-00006-of-00006.safetensors"
297
+ }
298
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a97c85b0c766e518528c4a7683d4a3e17f81756c8d1501b0ca7c0f7d1dca315
3
+ size 15920
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29ff13e81d9446301316284aedd9d39b0e904ea1197a4e1da92b5c5b580c51b6
3
+ size 15920
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88a59f114b657c3445b256b14c513ed3ce03f6bcbe30c1c597fe3c175da17ece
3
+ size 15920
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d38f2b51dae537aae03943533ace5b50d478bd5618021b79375f03ad3f9a246d
3
+ size 15920
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end_of_text|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "</s>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,733 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.982222222222222,
5
+ "eval_steps": 500,
6
+ "global_step": 504,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03950617283950617,
13
+ "grad_norm": 2.288396849528949,
14
+ "learning_rate": 8.18672068791075e-06,
15
+ "loss": 1.3346,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.07901234567901234,
20
+ "grad_norm": 1.8929681256595516,
21
+ "learning_rate": 1.1712549375688393e-05,
22
+ "loss": 1.1223,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.11851851851851852,
27
+ "grad_norm": 1.4562819635437423,
28
+ "learning_rate": 1.3775026942005194e-05,
29
+ "loss": 1.1066,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.1580246913580247,
34
+ "grad_norm": 1.4050742285496918,
35
+ "learning_rate": 1.5238378063466034e-05,
36
+ "loss": 1.0899,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.19753086419753085,
41
+ "grad_norm": 1.3153167730903892,
42
+ "learning_rate": 1.63734413758215e-05,
43
+ "loss": 1.068,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.23703703703703705,
48
+ "grad_norm": 1.4369967846795906,
49
+ "learning_rate": 1.7300855629782836e-05,
50
+ "loss": 1.0441,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.2765432098765432,
55
+ "grad_norm": 1.329888120477227,
56
+ "learning_rate": 1.8084973208875214e-05,
57
+ "loss": 1.0379,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.3160493827160494,
62
+ "grad_norm": 1.3378535534247475,
63
+ "learning_rate": 1.8764206751243677e-05,
64
+ "loss": 1.05,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.35555555555555557,
69
+ "grad_norm": 1.4123806746044558,
70
+ "learning_rate": 1.9363333196099635e-05,
71
+ "loss": 1.025,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.3950617283950617,
76
+ "grad_norm": 1.1859601137161715,
77
+ "learning_rate": 1.9899270063599143e-05,
78
+ "loss": 1.0303,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.4345679012345679,
83
+ "grad_norm": 1.304632071875575,
84
+ "learning_rate": 2e-05,
85
+ "loss": 1.0484,
86
+ "step": 55
87
+ },
88
+ {
89
+ "epoch": 0.4740740740740741,
90
+ "grad_norm": 1.183106489033389,
91
+ "learning_rate": 2e-05,
92
+ "loss": 1.0259,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.5135802469135803,
97
+ "grad_norm": 1.2699836294272915,
98
+ "learning_rate": 2e-05,
99
+ "loss": 1.028,
100
+ "step": 65
101
+ },
102
+ {
103
+ "epoch": 0.5530864197530864,
104
+ "grad_norm": 1.223033575337603,
105
+ "learning_rate": 2e-05,
106
+ "loss": 1.0459,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.5925925925925926,
111
+ "grad_norm": 1.2008866058582461,
112
+ "learning_rate": 2e-05,
113
+ "loss": 1.0634,
114
+ "step": 75
115
+ },
116
+ {
117
+ "epoch": 0.6320987654320988,
118
+ "grad_norm": 1.2833530733821379,
119
+ "learning_rate": 2e-05,
120
+ "loss": 1.0271,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.671604938271605,
125
+ "grad_norm": 1.163728901488675,
126
+ "learning_rate": 2e-05,
127
+ "loss": 1.03,
128
+ "step": 85
129
+ },
130
+ {
131
+ "epoch": 0.7111111111111111,
132
+ "grad_norm": 1.1416632177568837,
133
+ "learning_rate": 2e-05,
134
+ "loss": 1.0419,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.7506172839506173,
139
+ "grad_norm": 1.1923113133851808,
140
+ "learning_rate": 2e-05,
141
+ "loss": 1.0131,
142
+ "step": 95
143
+ },
144
+ {
145
+ "epoch": 0.7901234567901234,
146
+ "grad_norm": 1.099667508502151,
147
+ "learning_rate": 2e-05,
148
+ "loss": 1.0177,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.8296296296296296,
153
+ "grad_norm": 1.1653220897948604,
154
+ "learning_rate": 2e-05,
155
+ "loss": 1.0244,
156
+ "step": 105
157
+ },
158
+ {
159
+ "epoch": 0.8691358024691358,
160
+ "grad_norm": 1.1508720796926766,
161
+ "learning_rate": 2e-05,
162
+ "loss": 0.9878,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.908641975308642,
167
+ "grad_norm": 1.1402724355963554,
168
+ "learning_rate": 2e-05,
169
+ "loss": 1.0391,
170
+ "step": 115
171
+ },
172
+ {
173
+ "epoch": 0.9481481481481482,
174
+ "grad_norm": 1.141348796259256,
175
+ "learning_rate": 2e-05,
176
+ "loss": 1.0153,
177
+ "step": 120
178
+ },
179
+ {
180
+ "epoch": 0.9876543209876543,
181
+ "grad_norm": 1.1502126933733767,
182
+ "learning_rate": 2e-05,
183
+ "loss": 0.9995,
184
+ "step": 125
185
+ },
186
+ {
187
+ "epoch": 1.0271604938271606,
188
+ "grad_norm": 1.0266288490243014,
189
+ "learning_rate": 2e-05,
190
+ "loss": 0.7874,
191
+ "step": 130
192
+ },
193
+ {
194
+ "epoch": 1.0666666666666667,
195
+ "grad_norm": 1.2240976755676138,
196
+ "learning_rate": 2e-05,
197
+ "loss": 0.6494,
198
+ "step": 135
199
+ },
200
+ {
201
+ "epoch": 1.106172839506173,
202
+ "grad_norm": 1.15929122657082,
203
+ "learning_rate": 2e-05,
204
+ "loss": 0.6644,
205
+ "step": 140
206
+ },
207
+ {
208
+ "epoch": 1.145679012345679,
209
+ "grad_norm": 1.226821515640194,
210
+ "learning_rate": 2e-05,
211
+ "loss": 0.6478,
212
+ "step": 145
213
+ },
214
+ {
215
+ "epoch": 1.1851851851851851,
216
+ "grad_norm": 1.0784057055869019,
217
+ "learning_rate": 2e-05,
218
+ "loss": 0.6141,
219
+ "step": 150
220
+ },
221
+ {
222
+ "epoch": 1.2246913580246914,
223
+ "grad_norm": 1.2189273784729524,
224
+ "learning_rate": 2e-05,
225
+ "loss": 0.6171,
226
+ "step": 155
227
+ },
228
+ {
229
+ "epoch": 1.2641975308641975,
230
+ "grad_norm": 1.1463832706796795,
231
+ "learning_rate": 2e-05,
232
+ "loss": 0.6348,
233
+ "step": 160
234
+ },
235
+ {
236
+ "epoch": 1.3037037037037038,
237
+ "grad_norm": 1.277105384989837,
238
+ "learning_rate": 2e-05,
239
+ "loss": 0.6537,
240
+ "step": 165
241
+ },
242
+ {
243
+ "epoch": 1.34320987654321,
244
+ "grad_norm": 1.2493194408291017,
245
+ "learning_rate": 2e-05,
246
+ "loss": 0.6348,
247
+ "step": 170
248
+ },
249
+ {
250
+ "epoch": 1.382716049382716,
251
+ "grad_norm": 1.275379674934221,
252
+ "learning_rate": 2e-05,
253
+ "loss": 0.6359,
254
+ "step": 175
255
+ },
256
+ {
257
+ "epoch": 1.4222222222222223,
258
+ "grad_norm": 1.2351810219998518,
259
+ "learning_rate": 2e-05,
260
+ "loss": 0.634,
261
+ "step": 180
262
+ },
263
+ {
264
+ "epoch": 1.4617283950617284,
265
+ "grad_norm": 1.2400415938496727,
266
+ "learning_rate": 2e-05,
267
+ "loss": 0.6575,
268
+ "step": 185
269
+ },
270
+ {
271
+ "epoch": 1.5012345679012347,
272
+ "grad_norm": 1.20319815037753,
273
+ "learning_rate": 2e-05,
274
+ "loss": 0.6302,
275
+ "step": 190
276
+ },
277
+ {
278
+ "epoch": 1.5407407407407407,
279
+ "grad_norm": 1.2202272853056775,
280
+ "learning_rate": 2e-05,
281
+ "loss": 0.6433,
282
+ "step": 195
283
+ },
284
+ {
285
+ "epoch": 1.5802469135802468,
286
+ "grad_norm": 1.2375828410223908,
287
+ "learning_rate": 2e-05,
288
+ "loss": 0.6527,
289
+ "step": 200
290
+ },
291
+ {
292
+ "epoch": 1.6197530864197531,
293
+ "grad_norm": 1.2178746501653863,
294
+ "learning_rate": 2e-05,
295
+ "loss": 0.6631,
296
+ "step": 205
297
+ },
298
+ {
299
+ "epoch": 1.6592592592592592,
300
+ "grad_norm": 1.2015876208269247,
301
+ "learning_rate": 2e-05,
302
+ "loss": 0.6324,
303
+ "step": 210
304
+ },
305
+ {
306
+ "epoch": 1.6987654320987655,
307
+ "grad_norm": 1.2831290348498436,
308
+ "learning_rate": 2e-05,
309
+ "loss": 0.6325,
310
+ "step": 215
311
+ },
312
+ {
313
+ "epoch": 1.7382716049382716,
314
+ "grad_norm": 1.1989479874493834,
315
+ "learning_rate": 2e-05,
316
+ "loss": 0.6335,
317
+ "step": 220
318
+ },
319
+ {
320
+ "epoch": 1.7777777777777777,
321
+ "grad_norm": 1.2494160770138447,
322
+ "learning_rate": 2e-05,
323
+ "loss": 0.6548,
324
+ "step": 225
325
+ },
326
+ {
327
+ "epoch": 1.817283950617284,
328
+ "grad_norm": 1.199854634744343,
329
+ "learning_rate": 2e-05,
330
+ "loss": 0.6527,
331
+ "step": 230
332
+ },
333
+ {
334
+ "epoch": 1.8567901234567903,
335
+ "grad_norm": 1.2753911656579426,
336
+ "learning_rate": 2e-05,
337
+ "loss": 0.6532,
338
+ "step": 235
339
+ },
340
+ {
341
+ "epoch": 1.8962962962962964,
342
+ "grad_norm": 1.259005764478814,
343
+ "learning_rate": 2e-05,
344
+ "loss": 0.6321,
345
+ "step": 240
346
+ },
347
+ {
348
+ "epoch": 1.9358024691358025,
349
+ "grad_norm": 1.2073632789042554,
350
+ "learning_rate": 2e-05,
351
+ "loss": 0.6502,
352
+ "step": 245
353
+ },
354
+ {
355
+ "epoch": 1.9753086419753085,
356
+ "grad_norm": 1.3138749527875218,
357
+ "learning_rate": 2e-05,
358
+ "loss": 0.6762,
359
+ "step": 250
360
+ },
361
+ {
362
+ "epoch": 2.0148148148148146,
363
+ "grad_norm": 1.3591666117815475,
364
+ "learning_rate": 2e-05,
365
+ "loss": 0.542,
366
+ "step": 255
367
+ },
368
+ {
369
+ "epoch": 2.054320987654321,
370
+ "grad_norm": 2.063047801337415,
371
+ "learning_rate": 2e-05,
372
+ "loss": 0.2887,
373
+ "step": 260
374
+ },
375
+ {
376
+ "epoch": 2.093827160493827,
377
+ "grad_norm": 1.2684017214430752,
378
+ "learning_rate": 2e-05,
379
+ "loss": 0.2644,
380
+ "step": 265
381
+ },
382
+ {
383
+ "epoch": 2.1333333333333333,
384
+ "grad_norm": 1.2966722941774393,
385
+ "learning_rate": 2e-05,
386
+ "loss": 0.2571,
387
+ "step": 270
388
+ },
389
+ {
390
+ "epoch": 2.1728395061728394,
391
+ "grad_norm": 1.340692853831283,
392
+ "learning_rate": 2e-05,
393
+ "loss": 0.2528,
394
+ "step": 275
395
+ },
396
+ {
397
+ "epoch": 2.212345679012346,
398
+ "grad_norm": 1.14949845398096,
399
+ "learning_rate": 2e-05,
400
+ "loss": 0.2537,
401
+ "step": 280
402
+ },
403
+ {
404
+ "epoch": 2.251851851851852,
405
+ "grad_norm": 1.2372995647380092,
406
+ "learning_rate": 2e-05,
407
+ "loss": 0.2499,
408
+ "step": 285
409
+ },
410
+ {
411
+ "epoch": 2.291358024691358,
412
+ "grad_norm": 1.1599361078462038,
413
+ "learning_rate": 2e-05,
414
+ "loss": 0.2571,
415
+ "step": 290
416
+ },
417
+ {
418
+ "epoch": 2.330864197530864,
419
+ "grad_norm": 1.2300573894453493,
420
+ "learning_rate": 2e-05,
421
+ "loss": 0.2493,
422
+ "step": 295
423
+ },
424
+ {
425
+ "epoch": 2.3703703703703702,
426
+ "grad_norm": 1.3265214490034312,
427
+ "learning_rate": 2e-05,
428
+ "loss": 0.253,
429
+ "step": 300
430
+ },
431
+ {
432
+ "epoch": 2.4098765432098768,
433
+ "grad_norm": 1.2853819683882652,
434
+ "learning_rate": 2e-05,
435
+ "loss": 0.2517,
436
+ "step": 305
437
+ },
438
+ {
439
+ "epoch": 2.449382716049383,
440
+ "grad_norm": 1.3525697343190135,
441
+ "learning_rate": 2e-05,
442
+ "loss": 0.2494,
443
+ "step": 310
444
+ },
445
+ {
446
+ "epoch": 2.488888888888889,
447
+ "grad_norm": 1.2003581951396316,
448
+ "learning_rate": 2e-05,
449
+ "loss": 0.2552,
450
+ "step": 315
451
+ },
452
+ {
453
+ "epoch": 2.528395061728395,
454
+ "grad_norm": 1.3354927903528535,
455
+ "learning_rate": 2e-05,
456
+ "loss": 0.2653,
457
+ "step": 320
458
+ },
459
+ {
460
+ "epoch": 2.567901234567901,
461
+ "grad_norm": 1.4439934100900786,
462
+ "learning_rate": 2e-05,
463
+ "loss": 0.2802,
464
+ "step": 325
465
+ },
466
+ {
467
+ "epoch": 2.6074074074074076,
468
+ "grad_norm": 1.245376378199098,
469
+ "learning_rate": 2e-05,
470
+ "loss": 0.2641,
471
+ "step": 330
472
+ },
473
+ {
474
+ "epoch": 2.6469135802469137,
475
+ "grad_norm": 1.2818866706200012,
476
+ "learning_rate": 2e-05,
477
+ "loss": 0.2676,
478
+ "step": 335
479
+ },
480
+ {
481
+ "epoch": 2.68641975308642,
482
+ "grad_norm": 1.276975908014479,
483
+ "learning_rate": 2e-05,
484
+ "loss": 0.2749,
485
+ "step": 340
486
+ },
487
+ {
488
+ "epoch": 2.725925925925926,
489
+ "grad_norm": 1.2980698214464974,
490
+ "learning_rate": 2e-05,
491
+ "loss": 0.2732,
492
+ "step": 345
493
+ },
494
+ {
495
+ "epoch": 2.765432098765432,
496
+ "grad_norm": 1.3359535241429625,
497
+ "learning_rate": 2e-05,
498
+ "loss": 0.2739,
499
+ "step": 350
500
+ },
501
+ {
502
+ "epoch": 2.8049382716049385,
503
+ "grad_norm": 1.2472173979334094,
504
+ "learning_rate": 2e-05,
505
+ "loss": 0.2698,
506
+ "step": 355
507
+ },
508
+ {
509
+ "epoch": 2.8444444444444446,
510
+ "grad_norm": 1.2863387095995107,
511
+ "learning_rate": 2e-05,
512
+ "loss": 0.2647,
513
+ "step": 360
514
+ },
515
+ {
516
+ "epoch": 2.8839506172839506,
517
+ "grad_norm": 1.4156210734758483,
518
+ "learning_rate": 2e-05,
519
+ "loss": 0.2711,
520
+ "step": 365
521
+ },
522
+ {
523
+ "epoch": 2.9234567901234567,
524
+ "grad_norm": 1.299941175380543,
525
+ "learning_rate": 2e-05,
526
+ "loss": 0.2818,
527
+ "step": 370
528
+ },
529
+ {
530
+ "epoch": 2.962962962962963,
531
+ "grad_norm": 1.266519548711242,
532
+ "learning_rate": 2e-05,
533
+ "loss": 0.276,
534
+ "step": 375
535
+ },
536
+ {
537
+ "epoch": 3.0024691358024693,
538
+ "grad_norm": 1.1318259958419454,
539
+ "learning_rate": 2e-05,
540
+ "loss": 0.2592,
541
+ "step": 380
542
+ },
543
+ {
544
+ "epoch": 3.0419753086419754,
545
+ "grad_norm": 0.933334877688298,
546
+ "learning_rate": 2e-05,
547
+ "loss": 0.0838,
548
+ "step": 385
549
+ },
550
+ {
551
+ "epoch": 3.0814814814814815,
552
+ "grad_norm": 1.0809786957325411,
553
+ "learning_rate": 2e-05,
554
+ "loss": 0.0859,
555
+ "step": 390
556
+ },
557
+ {
558
+ "epoch": 3.1209876543209876,
559
+ "grad_norm": 0.9787186358692034,
560
+ "learning_rate": 2e-05,
561
+ "loss": 0.0784,
562
+ "step": 395
563
+ },
564
+ {
565
+ "epoch": 3.1604938271604937,
566
+ "grad_norm": 0.9546009939819529,
567
+ "learning_rate": 2e-05,
568
+ "loss": 0.0802,
569
+ "step": 400
570
+ },
571
+ {
572
+ "epoch": 3.2,
573
+ "grad_norm": 1.0327679510654035,
574
+ "learning_rate": 2e-05,
575
+ "loss": 0.0785,
576
+ "step": 405
577
+ },
578
+ {
579
+ "epoch": 3.2395061728395063,
580
+ "grad_norm": 0.9851858106843173,
581
+ "learning_rate": 2e-05,
582
+ "loss": 0.0804,
583
+ "step": 410
584
+ },
585
+ {
586
+ "epoch": 3.2790123456790123,
587
+ "grad_norm": 0.8657522447354971,
588
+ "learning_rate": 2e-05,
589
+ "loss": 0.0779,
590
+ "step": 415
591
+ },
592
+ {
593
+ "epoch": 3.3185185185185184,
594
+ "grad_norm": 1.0753000614988253,
595
+ "learning_rate": 2e-05,
596
+ "loss": 0.0799,
597
+ "step": 420
598
+ },
599
+ {
600
+ "epoch": 3.3580246913580245,
601
+ "grad_norm": 0.9715983171240334,
602
+ "learning_rate": 2e-05,
603
+ "loss": 0.0787,
604
+ "step": 425
605
+ },
606
+ {
607
+ "epoch": 3.397530864197531,
608
+ "grad_norm": 1.0205981518321303,
609
+ "learning_rate": 2e-05,
610
+ "loss": 0.0845,
611
+ "step": 430
612
+ },
613
+ {
614
+ "epoch": 3.437037037037037,
615
+ "grad_norm": 0.9519562378749633,
616
+ "learning_rate": 2e-05,
617
+ "loss": 0.0831,
618
+ "step": 435
619
+ },
620
+ {
621
+ "epoch": 3.476543209876543,
622
+ "grad_norm": 1.0856696967629995,
623
+ "learning_rate": 2e-05,
624
+ "loss": 0.0835,
625
+ "step": 440
626
+ },
627
+ {
628
+ "epoch": 3.5160493827160493,
629
+ "grad_norm": 1.0619796419728877,
630
+ "learning_rate": 2e-05,
631
+ "loss": 0.0873,
632
+ "step": 445
633
+ },
634
+ {
635
+ "epoch": 3.5555555555555554,
636
+ "grad_norm": 1.0366626282771845,
637
+ "learning_rate": 2e-05,
638
+ "loss": 0.0837,
639
+ "step": 450
640
+ },
641
+ {
642
+ "epoch": 3.595061728395062,
643
+ "grad_norm": 1.0659804060064433,
644
+ "learning_rate": 2e-05,
645
+ "loss": 0.0811,
646
+ "step": 455
647
+ },
648
+ {
649
+ "epoch": 3.634567901234568,
650
+ "grad_norm": 1.0334508292983433,
651
+ "learning_rate": 2e-05,
652
+ "loss": 0.0809,
653
+ "step": 460
654
+ },
655
+ {
656
+ "epoch": 3.674074074074074,
657
+ "grad_norm": 0.954017121382599,
658
+ "learning_rate": 2e-05,
659
+ "loss": 0.0883,
660
+ "step": 465
661
+ },
662
+ {
663
+ "epoch": 3.71358024691358,
664
+ "grad_norm": 1.0166440249144018,
665
+ "learning_rate": 2e-05,
666
+ "loss": 0.0879,
667
+ "step": 470
668
+ },
669
+ {
670
+ "epoch": 3.753086419753086,
671
+ "grad_norm": 1.0979200122546204,
672
+ "learning_rate": 2e-05,
673
+ "loss": 0.0878,
674
+ "step": 475
675
+ },
676
+ {
677
+ "epoch": 3.7925925925925927,
678
+ "grad_norm": 1.0013459456925258,
679
+ "learning_rate": 2e-05,
680
+ "loss": 0.0839,
681
+ "step": 480
682
+ },
683
+ {
684
+ "epoch": 3.832098765432099,
685
+ "grad_norm": 1.0160863439352807,
686
+ "learning_rate": 2e-05,
687
+ "loss": 0.0915,
688
+ "step": 485
689
+ },
690
+ {
691
+ "epoch": 3.871604938271605,
692
+ "grad_norm": 0.9858324147193233,
693
+ "learning_rate": 2e-05,
694
+ "loss": 0.0908,
695
+ "step": 490
696
+ },
697
+ {
698
+ "epoch": 3.911111111111111,
699
+ "grad_norm": 0.9282172156060597,
700
+ "learning_rate": 2e-05,
701
+ "loss": 0.0884,
702
+ "step": 495
703
+ },
704
+ {
705
+ "epoch": 3.950617283950617,
706
+ "grad_norm": 1.0696690745745738,
707
+ "learning_rate": 2e-05,
708
+ "loss": 0.0864,
709
+ "step": 500
710
+ }
711
+ ],
712
+ "logging_steps": 5,
713
+ "max_steps": 504,
714
+ "num_input_tokens_seen": 0,
715
+ "num_train_epochs": 4,
716
+ "save_steps": 100,
717
+ "stateful_callbacks": {
718
+ "TrainerControl": {
719
+ "args": {
720
+ "should_epoch_stop": false,
721
+ "should_evaluate": false,
722
+ "should_log": false,
723
+ "should_save": true,
724
+ "should_training_stop": true
725
+ },
726
+ "attributes": {}
727
+ }
728
+ },
729
+ "total_flos": 269178256277504.0,
730
+ "train_batch_size": 2,
731
+ "trial_name": null,
732
+ "trial_params": null
733
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e950b1f6ff593979b1e25c3163933f1897c302e80699e1475bee9bdbaef4e5af
3
+ size 7352
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)