JEdward7777's picture
update model card README.md
f9db674
|
raw
history blame
3.81 kB
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: finetuned-xlm-r-masakhaner-swa-whole-word-phonetic
    results: []

finetuned-xlm-r-masakhaner-swa-whole-word-phonetic

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.2301

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 62 38.7304
No log 2.0 124 37.1806
No log 3.0 186 33.3488
No log 4.0 248 28.7715
No log 5.0 310 24.8965
No log 6.0 372 21.4066
No log 7.0 434 19.1665
No log 8.0 496 17.3087
29.5022 9.0 558 15.5323
29.5022 10.0 620 14.4497
29.5022 11.0 682 14.1622
29.5022 12.0 744 13.7512
29.5022 13.0 806 13.3941
29.5022 14.0 868 13.0215
29.5022 15.0 930 12.8363
29.5022 16.0 992 12.6596
13.2409 17.0 1054 12.5914
13.2409 18.0 1116 12.2895
13.2409 19.0 1178 12.2700
13.2409 20.0 1240 12.1427
13.2409 21.0 1302 12.1344
13.2409 22.0 1364 12.0623
13.2409 23.0 1426 12.0630
13.2409 24.0 1488 12.0983
11.0242 25.0 1550 11.7902
11.0242 26.0 1612 11.8626
11.0242 27.0 1674 11.9154
11.0242 28.0 1736 11.6483
11.0242 29.0 1798 11.8620
11.0242 30.0 1860 11.5987
11.0242 31.0 1922 11.7633
11.0242 32.0 1984 11.7000
10.5931 33.0 2046 11.6631
10.5931 34.0 2108 11.4315
10.5931 35.0 2170 11.5619
10.5931 36.0 2232 11.5930
10.5931 37.0 2294 11.5537
10.5931 38.0 2356 11.6703
10.5931 39.0 2418 11.5488
10.5931 40.0 2480 11.4440
10.4503 41.0 2542 11.3210
10.4503 42.0 2604 11.4373
10.4503 43.0 2666 11.4868
10.4503 44.0 2728 11.3895
10.4503 45.0 2790 11.4097
10.4503 46.0 2852 11.5567
10.4503 47.0 2914 11.3519
10.4503 48.0 2976 11.3263
10.4239 49.0 3038 11.4049
10.4239 50.0 3100 11.2301

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1