speecht5_tts / README.md
JBZhang2342's picture
Model save
9663dae
|
raw
history blame
4.44 kB
metadata
license: mit
base_model: microsoft/speecht5_tts
tags:
  - generated_from_trainer
model-index:
  - name: speecht5_tts
    results: []

speecht5_tts

This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6650

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 15000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 0.53 250 1.1630
1.3203 1.06 500 0.8518
1.3203 1.6 750 0.7785
0.8972 2.13 1000 0.7502
0.8972 2.66 1250 0.7369
0.8135 3.19 1500 0.7193
0.8135 3.72 1750 0.7152
0.777 4.26 2000 0.7082
0.777 4.79 2250 0.7076
0.7586 5.32 2500 0.6965
0.7586 5.85 2750 0.6894
0.747 6.38 3000 0.6790
0.747 6.91 3250 0.6858
0.7315 7.45 3500 0.6906
0.7315 7.98 3750 0.6687
0.7153 8.51 4000 0.6731
0.7153 9.04 4250 0.6732
0.7119 9.57 4500 0.6706
0.7119 10.11 4750 0.6648
0.6952 10.64 5000 0.6638
0.6952 11.17 5250 0.6652
0.6904 11.7 5500 0.6667
0.6904 12.23 5750 0.6629
0.6774 12.77 6000 0.6614
0.6774 13.3 6250 0.6644
0.6812 13.83 6500 0.6638
0.6812 14.36 6750 0.6621
0.6644 14.89 7000 0.6621
0.6644 15.43 7250 0.6604
0.6615 15.96 7500 0.6690
0.6615 16.49 7750 0.6540
0.6636 17.02 8000 0.6613
0.6636 17.55 8250 0.6637
0.6523 18.09 8500 0.6687
0.6523 18.62 8750 0.6582
0.6462 19.15 9000 0.6597
0.6462 19.68 9250 0.6586
0.6437 20.21 9500 0.6614
0.6437 20.74 9750 0.6627
0.6418 21.28 10000 0.6641
0.6418 21.81 10250 0.6633
0.6416 22.34 10500 0.6636
0.6416 22.87 10750 0.6623
0.6341 23.4 11000 0.6609
0.6341 23.94 11250 0.6615
0.6328 24.47 11500 0.6656
0.6328 25.0 11750 0.6609
0.6277 25.53 12000 0.6672
0.6277 26.06 12250 0.6636
0.6216 26.6 12500 0.6603
0.6216 27.13 12750 0.6673
0.6311 27.66 13000 0.6700
0.6311 28.19 13250 0.6616
0.6211 28.72 13500 0.6638
0.6211 29.26 13750 0.6610
0.6192 29.79 14000 0.6670
0.6192 30.32 14250 0.6679
0.6205 30.85 14500 0.6703
0.6205 31.38 14750 0.6636
0.6161 31.91 15000 0.6650

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.14.1