metadata
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_tts
results: []
speecht5_tts
This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6650
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 15000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.53 | 250 | 1.1630 |
1.3203 | 1.06 | 500 | 0.8518 |
1.3203 | 1.6 | 750 | 0.7785 |
0.8972 | 2.13 | 1000 | 0.7502 |
0.8972 | 2.66 | 1250 | 0.7369 |
0.8135 | 3.19 | 1500 | 0.7193 |
0.8135 | 3.72 | 1750 | 0.7152 |
0.777 | 4.26 | 2000 | 0.7082 |
0.777 | 4.79 | 2250 | 0.7076 |
0.7586 | 5.32 | 2500 | 0.6965 |
0.7586 | 5.85 | 2750 | 0.6894 |
0.747 | 6.38 | 3000 | 0.6790 |
0.747 | 6.91 | 3250 | 0.6858 |
0.7315 | 7.45 | 3500 | 0.6906 |
0.7315 | 7.98 | 3750 | 0.6687 |
0.7153 | 8.51 | 4000 | 0.6731 |
0.7153 | 9.04 | 4250 | 0.6732 |
0.7119 | 9.57 | 4500 | 0.6706 |
0.7119 | 10.11 | 4750 | 0.6648 |
0.6952 | 10.64 | 5000 | 0.6638 |
0.6952 | 11.17 | 5250 | 0.6652 |
0.6904 | 11.7 | 5500 | 0.6667 |
0.6904 | 12.23 | 5750 | 0.6629 |
0.6774 | 12.77 | 6000 | 0.6614 |
0.6774 | 13.3 | 6250 | 0.6644 |
0.6812 | 13.83 | 6500 | 0.6638 |
0.6812 | 14.36 | 6750 | 0.6621 |
0.6644 | 14.89 | 7000 | 0.6621 |
0.6644 | 15.43 | 7250 | 0.6604 |
0.6615 | 15.96 | 7500 | 0.6690 |
0.6615 | 16.49 | 7750 | 0.6540 |
0.6636 | 17.02 | 8000 | 0.6613 |
0.6636 | 17.55 | 8250 | 0.6637 |
0.6523 | 18.09 | 8500 | 0.6687 |
0.6523 | 18.62 | 8750 | 0.6582 |
0.6462 | 19.15 | 9000 | 0.6597 |
0.6462 | 19.68 | 9250 | 0.6586 |
0.6437 | 20.21 | 9500 | 0.6614 |
0.6437 | 20.74 | 9750 | 0.6627 |
0.6418 | 21.28 | 10000 | 0.6641 |
0.6418 | 21.81 | 10250 | 0.6633 |
0.6416 | 22.34 | 10500 | 0.6636 |
0.6416 | 22.87 | 10750 | 0.6623 |
0.6341 | 23.4 | 11000 | 0.6609 |
0.6341 | 23.94 | 11250 | 0.6615 |
0.6328 | 24.47 | 11500 | 0.6656 |
0.6328 | 25.0 | 11750 | 0.6609 |
0.6277 | 25.53 | 12000 | 0.6672 |
0.6277 | 26.06 | 12250 | 0.6636 |
0.6216 | 26.6 | 12500 | 0.6603 |
0.6216 | 27.13 | 12750 | 0.6673 |
0.6311 | 27.66 | 13000 | 0.6700 |
0.6311 | 28.19 | 13250 | 0.6616 |
0.6211 | 28.72 | 13500 | 0.6638 |
0.6211 | 29.26 | 13750 | 0.6610 |
0.6192 | 29.79 | 14000 | 0.6670 |
0.6192 | 30.32 | 14250 | 0.6679 |
0.6205 | 30.85 | 14500 | 0.6703 |
0.6205 | 31.38 | 14750 | 0.6636 |
0.6161 | 31.91 | 15000 | 0.6650 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.14.1