J3 commited on
Commit
7d5da08
·
1 Parent(s): b5da266

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - marsyas/gtzan
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: distilhubert-finetuned-gtzan-v3-finetuned-gtzan
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # distilhubert-finetuned-gtzan-v3-finetuned-gtzan
18
+
19
+ This model is a fine-tuned version of [MariaK/distilhubert-finetuned-gtzan-v3](https://huggingface.co/MariaK/distilhubert-finetuned-gtzan-v3) on the GTZAN dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.5656
22
+ - Accuracy: 0.87
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 8
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 2
46
+ - total_train_batch_size: 16
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_ratio: 0.2
50
+ - num_epochs: 5
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
56
+ | 0.074 | 0.99 | 56 | 0.8150 | 0.79 |
57
+ | 0.0546 | 2.0 | 113 | 0.5489 | 0.86 |
58
+ | 0.0156 | 2.99 | 169 | 0.5313 | 0.88 |
59
+ | 0.0072 | 4.0 | 226 | 0.5566 | 0.87 |
60
+ | 0.0058 | 4.96 | 280 | 0.5656 | 0.87 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.30.2
66
+ - Pytorch 2.0.0
67
+ - Datasets 2.1.0
68
+ - Tokenizers 0.13.3