|
---
|
|
license: other
|
|
base_model: nvidia/mit-b0
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- scene_parse_150
|
|
model-index:
|
|
- name: segformer-b0-scene-parse-150
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# segformer-b0-scene-parse-150
|
|
|
|
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 4.9476
|
|
- Mean Iou: 0.0059
|
|
- Mean Accuracy: 0.0467
|
|
- Overall Accuracy: 0.0792
|
|
- Per Category Iou: [0.015290646787191019, 0.0, 0.0, 0.29707155265364804, 0.0, 0.08276914236227738, 0.0, 0.0, 0.0, 0.0, 0.012636310927907107, 0.0, 0.0, 0.0, 0.08227787105184403, 0.0, 0.0, 0.0, 0.02964898714815463, 0.0, 0.0, nan, 0.001510992695378508, nan, 0.0, 0.0, 0.0, 0.0008937418640346616, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0006580782683957911, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.15182749560810285, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 4.8507583352197394e-05, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.09386101051905502, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
|
- Per Category Accuracy: [0.015300257646825658, nan, nan, 0.3063194873378629, nan, 0.4663087217719412, nan, nan, 0.0, nan, 0.015581846316572973, nan, nan, nan, 0.09177343204121063, 0.0, nan, nan, 0.040619224731872905, 0.0, nan, nan, 0.00745248489659126, nan, 0.0, nan, nan, 0.0011775849269129355, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0006601654719106768, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.1750304681339164, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 5.521201413427562e-05, nan, nan, nan, nan, nan, nan, 0.18748493024857915, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan]
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 6e-05
|
|
- train_batch_size: 2
|
|
- eval_batch_size: 2
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 1
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
| 4.8424 | 1.0 | 20 | 4.9476 | 0.0059 | 0.0467 | 0.0792 | [0.015290646787191019, 0.0, 0.0, 0.29707155265364804, 0.0, 0.08276914236227738, 0.0, 0.0, 0.0, 0.0, 0.012636310927907107, 0.0, 0.0, 0.0, 0.08227787105184403, 0.0, 0.0, 0.0, 0.02964898714815463, 0.0, 0.0, nan, 0.001510992695378508, nan, 0.0, 0.0, 0.0, 0.0008937418640346616, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0006580782683957911, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.15182749560810285, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 4.8507583352197394e-05, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.09386101051905502, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] | [0.015300257646825658, nan, nan, 0.3063194873378629, nan, 0.4663087217719412, nan, nan, 0.0, nan, 0.015581846316572973, nan, nan, nan, 0.09177343204121063, 0.0, nan, nan, 0.040619224731872905, 0.0, nan, nan, 0.00745248489659126, nan, 0.0, nan, nan, 0.0011775849269129355, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0006601654719106768, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.1750304681339164, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 5.521201413427562e-05, nan, nan, nan, nan, nan, nan, 0.18748493024857915, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan] |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.41.2
|
|
- Pytorch 2.2.0
|
|
- Datasets 2.20.0
|
|
- Tokenizers 0.19.1
|
|
|