|
--- |
|
language: |
|
- nl |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_8_0 |
|
- mozilla-foundation/common_voice_7_0 |
|
- nl |
|
- robust-speech-event |
|
- model_for_talk |
|
- hf-asr-leaderboard |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
model-index: |
|
- name: XLS-R-300M - Dutch |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8 NL |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: nl |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 46.94 |
|
- name: Test CER |
|
type: cer |
|
value: 21.65 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: nl |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: ??? |
|
- name: Test CER |
|
type: cer |
|
value: ??? |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Test Data |
|
type: speech-recognition-community-v2/eval_data |
|
args: nl |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 42.56 |
|
--- |
|
|
|
# xlsr300m_cv_8.0_nl |
|
|
|
|
|
#### Evaluation Commands |
|
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` |
|
|
|
```bash |
|
python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset mozilla-foundation/common_voice_8_0 --config nl --split test |
|
``` |
|
|
|
2. To evaluate on `speech-recognition-community-v2/dev_data` |
|
|
|
```bash |
|
python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset speech-recognition-community-v2/dev_data --config nl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 |
|
``` |
|
|
|
### Inference |
|
|
|
```python |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoModelForCTC, AutoProcessor |
|
import torchaudio.functional as F |
|
|
|
model_id = "Iskaj/xlsr300m_cv_8.0_nl" |
|
|
|
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "nl", split="test", streaming=True, use_auth_token=True)) |
|
|
|
sample = next(sample_iter) |
|
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() |
|
|
|
model = AutoModelForCTC.from_pretrained(model_id) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
inputs = processor(resampled_audio, sampling_rate=16_000, return_tensors="pt") |
|
with torch.no_grad(): |
|
logits = model(**inputs).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.batch_decode(predicted_ids) |
|
|
|
transcription[0].lower() |
|
#'het kontine schip lag aangemeert in de aven' |
|
``` |
|
|