IrwinD's picture
Model save
6bdfcab verified
|
raw
history blame
3.48 kB
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- trl
- reward-trainer
- generated_from_trainer
datasets:
- hdfs_rlhf_log_summary_dataset
metrics:
- accuracy
model-index:
- name: log_sage_reward_model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: hdfs_rlhf_log_summary_dataset
type: hdfs_rlhf_log_summary_dataset
config: default
split: None
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# log_sage_reward_model
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the hdfs_rlhf_log_summary_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5838
- Accuracy: 0.9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 1 | 0.6933 | 0.6 |
| No log | 2.0 | 3 | 0.6923 | 0.9 |
| No log | 3.0 | 4 | 0.6920 | 0.9 |
| No log | 4.0 | 6 | 0.6912 | 0.9 |
| No log | 5.0 | 8 | 0.6902 | 0.9 |
| No log | 6.0 | 9 | 0.6898 | 0.9 |
| 0.2745 | 7.0 | 11 | 0.6885 | 0.9 |
| 0.2745 | 8.0 | 12 | 0.6876 | 0.9 |
| 0.2745 | 9.0 | 13 | 0.6862 | 0.9 |
| 0.2745 | 10.0 | 15 | 0.6830 | 0.9 |
| 0.2745 | 11.0 | 16 | 0.6813 | 0.9 |
| 0.2745 | 12.0 | 18 | 0.6768 | 0.8 |
| 0.2705 | 13.0 | 20 | 0.6707 | 0.8 |
| 0.2705 | 14.0 | 21 | 0.6665 | 0.8 |
| 0.2705 | 15.0 | 23 | 0.6576 | 0.8 |
| 0.2705 | 16.0 | 24 | 0.6521 | 0.8 |
| 0.2705 | 17.0 | 25 | 0.6457 | 0.8 |
| 0.2705 | 18.0 | 27 | 0.6334 | 0.9 |
| 0.2705 | 19.0 | 28 | 0.6273 | 0.9 |
| 0.2555 | 20.0 | 30 | 0.6165 | 0.9 |
| 0.2555 | 21.0 | 32 | 0.6063 | 0.9 |
| 0.2555 | 22.0 | 33 | 0.6017 | 0.9 |
| 0.2555 | 23.0 | 35 | 0.5942 | 0.9 |
| 0.2555 | 24.0 | 36 | 0.5911 | 0.9 |
| 0.2555 | 25.0 | 37 | 0.5882 | 0.9 |
| 0.2555 | 26.0 | 39 | 0.5846 | 0.9 |
| 0.2245 | 27.0 | 40 | 0.5838 | 0.9 |
### Framework versions
- Transformers 4.39.0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2