|
|
|
|
|
|
|
|
try: |
|
|
from collections.abc import Iterable |
|
|
except: |
|
|
from collections import Iterable |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
from torch._utils import _unflatten_dense_tensors |
|
|
from torch.nn.utils import parameters_to_vector |
|
|
|
|
|
bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm) |
|
|
|
|
|
|
|
|
def split_bn_bias(layer_groups): |
|
|
"Split the layers in `layer_groups` into batchnorm (`bn_types`) and non-batchnorm groups." |
|
|
split_groups = [] |
|
|
for l in layer_groups: |
|
|
l1, l2 = [], [] |
|
|
for c in l.children(): |
|
|
if isinstance(c, bn_types): |
|
|
l2.append(c) |
|
|
else: |
|
|
l1.append(c) |
|
|
split_groups += [nn.Sequential(*l1), nn.Sequential(*l2)] |
|
|
return split_groups |
|
|
|
|
|
|
|
|
def get_master(layer_groups, flat_master: bool = False): |
|
|
"Return two lists, one for the model parameters in FP16 and one for the master parameters in FP32." |
|
|
split_groups = split_bn_bias(layer_groups) |
|
|
model_params = [[param for param in lg.parameters() if param.requires_grad] for lg in split_groups] |
|
|
if flat_master: |
|
|
master_params = [] |
|
|
for lg in model_params: |
|
|
if len(lg) != 0: |
|
|
mp = parameters_to_vector([param.data.float() for param in lg]) |
|
|
mp = torch.nn.Parameter(mp, requires_grad=True) |
|
|
if mp.grad is None: mp.grad = mp.new(*mp.size()) |
|
|
master_params.append([mp]) |
|
|
else: |
|
|
master_params.append([]) |
|
|
return model_params, master_params |
|
|
else: |
|
|
master_params = [[param.clone().float().detach() for param in lg] for lg in model_params] |
|
|
for mp in master_params: |
|
|
for param in mp: param.requires_grad = True |
|
|
return model_params, master_params |
|
|
|
|
|
|
|
|
def model_g2master_g(model_params, master_params, flat_master: bool = False) -> None: |
|
|
"Copy the `model_params` gradients to `master_params` for the optimizer step." |
|
|
if flat_master: |
|
|
for model_group, master_group in zip(model_params, master_params): |
|
|
if len(master_group) != 0: |
|
|
master_group[0].grad.data.copy_(parameters_to_vector([p.grad.data.float() for p in model_group])) |
|
|
else: |
|
|
for model_group, master_group in zip(model_params, master_params): |
|
|
for model, master in zip(model_group, master_group): |
|
|
if model.grad is not None: |
|
|
if master.grad is None: master.grad = master.data.new(*master.data.size()) |
|
|
master.grad.data.copy_(model.grad.data) |
|
|
else: |
|
|
master.grad = None |
|
|
|
|
|
|
|
|
def master2model(model_params, master_params, flat_master: bool = False) -> None: |
|
|
"Copy `master_params` to `model_params`." |
|
|
if flat_master: |
|
|
for model_group, master_group in zip(model_params, master_params): |
|
|
if len(model_group) != 0: |
|
|
for model, master in zip(model_group, _unflatten_dense_tensors(master_group[0].data, model_group)): |
|
|
model.data.copy_(master) |
|
|
else: |
|
|
for model_group, master_group in zip(model_params, master_params): |
|
|
for model, master in zip(model_group, master_group): model.data.copy_(master.data) |
|
|
|
|
|
|
|
|
def listify(p=None, q=None): |
|
|
"Make `p` listy and the same length as `q`." |
|
|
if p is None: |
|
|
p = [] |
|
|
elif isinstance(p, str): |
|
|
p = [p] |
|
|
elif not isinstance(p, Iterable): |
|
|
p = [p] |
|
|
n = q if type(q) == int else len(p) if q is None else len(q) |
|
|
if len(p) == 1: p = p * n |
|
|
assert len(p) == n, f'List len mismatch ({len(p)} vs {n})' |
|
|
return list(p) |
|
|
|
|
|
|
|
|
def trainable_params(m: nn.Module): |
|
|
"Return list of trainable params in `m`." |
|
|
res = filter(lambda p: p.requires_grad, m.parameters()) |
|
|
return res |
|
|
|
|
|
|
|
|
def is_tuple(x) -> bool: return isinstance(x, tuple) |
|
|
|
|
|
|
|
|
|
|
|
class OptimWrapper(): |
|
|
"Basic wrapper around `opt` to simplify hyper-parameters changes." |
|
|
|
|
|
def __init__(self, opt, wd, true_wd: bool = False, bn_wd: bool = True): |
|
|
self.opt, self.true_wd, self.bn_wd = opt, true_wd, bn_wd |
|
|
self.opt_keys = list(self.opt.param_groups[0].keys()) |
|
|
self.opt_keys.remove('params') |
|
|
self.read_defaults() |
|
|
self.wd = wd |
|
|
|
|
|
@classmethod |
|
|
def create(cls, opt_func, lr, |
|
|
layer_groups, **kwargs): |
|
|
"Create an `optim.Optimizer` from `opt_func` with `lr`. Set lr on `layer_groups`." |
|
|
split_groups = split_bn_bias(layer_groups) |
|
|
opt = opt_func([{'params': trainable_params(l), 'lr': 0} for l in split_groups]) |
|
|
opt = cls(opt, **kwargs) |
|
|
opt.lr, opt.opt_func = listify(lr, layer_groups), opt_func |
|
|
return opt |
|
|
|
|
|
def new(self, layer_groups): |
|
|
"Create a new `OptimWrapper` from `self` with another `layer_groups` but the same hyper-parameters." |
|
|
opt_func = getattr(self, 'opt_func', self.opt.__class__) |
|
|
split_groups = split_bn_bias(layer_groups) |
|
|
opt = opt_func([{'params': trainable_params(l), 'lr': 0} for l in split_groups]) |
|
|
return self.create(opt_func, self.lr, layer_groups, wd=self.wd, true_wd=self.true_wd, bn_wd=self.bn_wd) |
|
|
|
|
|
def __repr__(self) -> str: |
|
|
return f'OptimWrapper over {repr(self.opt)}.\nTrue weight decay: {self.true_wd}' |
|
|
|
|
|
|
|
|
def step(self) -> None: |
|
|
"Set weight decay and step optimizer." |
|
|
|
|
|
if self.true_wd: |
|
|
for lr, wd, pg1, pg2 in zip(self._lr, self._wd, self.opt.param_groups[::2], self.opt.param_groups[1::2]): |
|
|
for p in pg1['params']: |
|
|
|
|
|
if p.requires_grad is False: |
|
|
continue |
|
|
p.data.mul_(1 - wd * lr) |
|
|
if self.bn_wd: |
|
|
for p in pg2['params']: |
|
|
|
|
|
if p.requires_grad is False: |
|
|
continue |
|
|
p.data.mul_(1 - wd * lr) |
|
|
self.set_val('weight_decay', listify(0, self._wd)) |
|
|
self.opt.step() |
|
|
|
|
|
def zero_grad(self) -> None: |
|
|
"Clear optimizer gradients." |
|
|
self.opt.zero_grad() |
|
|
|
|
|
|
|
|
def __getattr__(self, k: str): |
|
|
return getattr(self.opt, k, None) |
|
|
|
|
|
def clear(self): |
|
|
"Reset the state of the inner optimizer." |
|
|
sd = self.state_dict() |
|
|
sd['state'] = {} |
|
|
self.load_state_dict(sd) |
|
|
|
|
|
|
|
|
@property |
|
|
def lr(self) -> float: |
|
|
return self._lr[-1] |
|
|
|
|
|
@lr.setter |
|
|
def lr(self, val: float) -> None: |
|
|
self._lr = self.set_val('lr', listify(val, self._lr)) |
|
|
|
|
|
@property |
|
|
def mom(self) -> float: |
|
|
return self._mom[-1] |
|
|
|
|
|
@mom.setter |
|
|
def mom(self, val: float) -> None: |
|
|
if 'momentum' in self.opt_keys: |
|
|
self.set_val('momentum', listify(val, self._mom)) |
|
|
elif 'betas' in self.opt_keys: |
|
|
self.set_val('betas', (listify(val, self._mom), self._beta)) |
|
|
self._mom = listify(val, self._mom) |
|
|
|
|
|
@property |
|
|
def beta(self) -> float: |
|
|
return None if self._beta is None else self._beta[-1] |
|
|
|
|
|
@beta.setter |
|
|
def beta(self, val: float) -> None: |
|
|
"Set beta (or alpha as makes sense for given optimizer)." |
|
|
if val is None: return |
|
|
if 'betas' in self.opt_keys: |
|
|
self.set_val('betas', (self._mom, listify(val, self._beta))) |
|
|
elif 'alpha' in self.opt_keys: |
|
|
self.set_val('alpha', listify(val, self._beta)) |
|
|
self._beta = listify(val, self._beta) |
|
|
|
|
|
@property |
|
|
def wd(self) -> float: |
|
|
return self._wd[-1] |
|
|
|
|
|
@wd.setter |
|
|
def wd(self, val: float) -> None: |
|
|
"Set weight decay." |
|
|
if not self.true_wd: self.set_val('weight_decay', listify(val, self._wd), bn_groups=self.bn_wd) |
|
|
self._wd = listify(val, self._wd) |
|
|
|
|
|
|
|
|
def read_defaults(self) -> None: |
|
|
"Read the values inside the optimizer for the hyper-parameters." |
|
|
self._beta = None |
|
|
if 'lr' in self.opt_keys: self._lr = self.read_val('lr') |
|
|
if 'momentum' in self.opt_keys: self._mom = self.read_val('momentum') |
|
|
if 'alpha' in self.opt_keys: self._beta = self.read_val('alpha') |
|
|
if 'betas' in self.opt_keys: self._mom, self._beta = self.read_val('betas') |
|
|
if 'weight_decay' in self.opt_keys: self._wd = self.read_val('weight_decay') |
|
|
|
|
|
def set_val(self, key: str, val, bn_groups: bool = True): |
|
|
"Set `val` inside the optimizer dictionary at `key`." |
|
|
if is_tuple(val): val = [(v1, v2) for v1, v2 in zip(*val)] |
|
|
for v, pg1, pg2 in zip(val, self.opt.param_groups[::2], self.opt.param_groups[1::2]): |
|
|
pg1[key] = v |
|
|
if bn_groups: pg2[key] = v |
|
|
return val |
|
|
|
|
|
def read_val(self, key: str): |
|
|
"Read a hyperparameter `key` in the optimizer dictionary." |
|
|
val = [pg[key] for pg in self.opt.param_groups[::2]] |
|
|
if is_tuple(val[0]): val = [o[0] for o in val], [o[1] for o in val] |
|
|
return val |
|
|
|
|
|
|
|
|
class FastAIMixedOptim(OptimWrapper): |
|
|
@classmethod |
|
|
def create(cls, opt_func, lr, |
|
|
layer_groups, model, flat_master=False, loss_scale=512.0, **kwargs): |
|
|
"Create an `optim.Optimizer` from `opt_func` with `lr`. Set lr on `layer_groups`." |
|
|
opt = OptimWrapper.create(opt_func, lr, layer_groups, **kwargs) |
|
|
opt.model_params, opt.master_params = get_master(layer_groups, flat_master) |
|
|
opt.flat_master = flat_master |
|
|
opt.loss_scale = loss_scale |
|
|
opt.model = model |
|
|
|
|
|
|
|
|
mom, wd, beta = opt.mom, opt.wd, opt.beta |
|
|
lrs = [lr for lr in opt._lr for _ in range(2)] |
|
|
opt_params = [{'params': mp, 'lr': lr} for mp, lr in zip(opt.master_params, lrs)] |
|
|
opt.opt = opt_func(opt_params) |
|
|
opt.mom, opt.wd, opt.beta = mom, wd, beta |
|
|
return opt |
|
|
|
|
|
def step(self): |
|
|
model_g2master_g(self.model_params, self.master_params, self.flat_master) |
|
|
for group in self.master_params: |
|
|
for param in group: param.grad.div_(self.loss_scale) |
|
|
super(FastAIMixedOptim, self).step() |
|
|
self.model.zero_grad() |
|
|
|
|
|
master2model(self.model_params, self.master_params, self.flat_master) |
|
|
|