English
jinjieyuan's picture
Upload model
1960aa4
|
raw
history blame
5.16 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: first_try
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE QQP
          type: glue
          config: qqp
          split: validation
          args: qqp
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9094978976007915
          - name: F1
            type: f1
            value: 0.8781916841439461

first_try

This model is a fine-tuned version of bert-base-uncased on the GLUE QQP dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2975
  • Accuracy: 0.9095
  • F1: 0.8782
  • Combined Score: 0.8938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.3347 1.0 11371 0.2781 0.8986 0.8645 0.8816 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 320, 1: 256, 2: 320, 3: 192, 4: 256, 5: 256, 6: 192, 7: 256, 8: 64, 9: 192, 10: 192, 11: 512, 12: 1675, 13: 1666, 14: 1787, 15: 1791, 16: 1772, 17: 1751, 18: 1709, 19: 1590, 20: 1320, 21: 762, 22: 348, 23: 115})])
0.3347 1.0 11371 0.2633 0.9022 0.8709 0.8865 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])
0.1664 2.0 22742 0.2724 0.9048 0.8736 0.8892 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 320, 1: 256, 2: 320, 3: 192, 4: 256, 5: 256, 6: 192, 7: 256, 8: 64, 9: 192, 10: 192, 11: 512, 12: 1675, 13: 1666, 14: 1787, 15: 1791, 16: 1772, 17: 1751, 18: 1709, 19: 1590, 20: 1320, 21: 762, 22: 348, 23: 115})])
0.1664 2.0 22742 0.2665 0.9106 0.8809 0.8958 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])
0.092 3.0 34113 0.2872 0.9094 0.8786 0.8940 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 320, 1: 256, 2: 320, 3: 192, 4: 256, 5: 256, 6: 192, 7: 256, 8: 64, 9: 192, 10: 192, 11: 512, 12: 1675, 13: 1666, 14: 1787, 15: 1791, 16: 1772, 17: 1751, 18: 1709, 19: 1590, 20: 1320, 21: 762, 22: 348, 23: 115})])
0.092 3.0 34113 0.2708 0.9141 0.8846 0.8994 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])
0.0693 4.0 45484 0.2966 0.9088 0.8771 0.8930 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 320, 1: 256, 2: 320, 3: 192, 4: 256, 5: 256, 6: 192, 7: 256, 8: 64, 9: 192, 10: 192, 11: 512, 12: 1675, 13: 1666, 14: 1787, 15: 1791, 16: 1772, 17: 1751, 18: 1709, 19: 1590, 20: 1320, 21: 762, 22: 348, 23: 115})])
0.0693 4.0 45484 0.2779 0.9144 0.8846 0.8995 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])

Framework versions

  • Transformers 4.29.1
  • Pytorch 1.12.1
  • Datasets 2.13.1
  • Tokenizers 0.13.3