yuwenz's picture
upload int8 onnx model
ac67851
|
raw
history blame
1.91 kB
---
language: en
license: apache-2.0
tags:
- text-classfication
- int8
- Intel® Neural Compressor
- PostTrainingStatic
datasets:
- sst2
metrics:
- accuracy
---
# INT8 DistilBERT base uncased finetuned SST-2
## Post-training static quantization
### PyTorch
This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english).
The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so
the real sampling size is 104.
#### Test result
| |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-accuracy)** |0.9037|0.9106|
| **Model size (MB)** |65|255|
#### Load with optimum:
```python
from optimum.intel.neural_compressor.quantization import IncQuantizedModelForSequenceClassification
int8_model = IncQuantizedModelForSequenceClassification.from_pretrained(
'Intel/distilbert-base-uncased-finetuned-sst-2-english-int8-static',
)
```
### ONNX
This is an INT8 ONNX model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english).
#### Test result
| |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-f1)** |0.9060|0.9106|
| **Model size (MB)** |80|256|
#### Load ONNX model:
```python
from optimum.onnxruntime import ORTModelForSequenceClassification
model = ORTModelForSequenceClassification.from_pretrained('Intel/distilbert-base-uncased-finetuned-sst-2-english-int8-static')
```