metadata
language:
- en
license: mit
tags:
- text-classfication
- int8
- PostTrainingDynamic
datasets:
- glue
metrics:
- f1
model-index:
- name: camembert-base-mrpc-int8-dynamic
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: F1
type: f1
value: 0.8842832469775476
INT8 camembert-base-mrpc
Post-training dynamic quantization
This is an INT8 PyTorch model quantized with Intel® Neural Compressor.
The original fp32 model comes from the fine-tuned model camembert-base-mrpc.
The linear module roberta.encoder.layer.6.attention.self.query falls back to fp32 to meet the 1% relative accuracy loss.
Test result
- Batch size = 8
- Amazon Web Services c6i.xlarge (Intel ICE Lake: 4 vCPUs, 8g Memory) instance.
INT8 | FP32 | |
---|---|---|
Throughput (samples/sec) | 24.745 | 13.078 |
Accuracy (eval-f1) | 0.8843 | 0.8928 |
Model size (MB) | 180 | 422 |
Load with Intel® Neural Compressor (build from source):
from neural_compressor.utils.load_huggingface import OptimizedModel
int8_model = OptimizedModel.from_pretrained(
'Intel/camembert-base-mrpc-int8-dynamic',
)
Notes:
- The INT8 model has better performance than the FP32 model when the CPU is fully occupied. Otherwise, there will be the illusion that INT8 is inferior to FP32.