|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import Any, Callable, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.cache_utils import Cache, DynamicCache | 
					
						
						|  | from transformers.generation import GenerationMixin | 
					
						
						|  | from transformers.integrations import use_kernel_forward_from_hub | 
					
						
						|  | from transformers.masking_utils import create_causal_mask | 
					
						
						|  | from transformers.modeling_flash_attention_utils import FlashAttentionKwargs | 
					
						
						|  | from transformers.modeling_layers import GradientCheckpointingLayer | 
					
						
						|  | from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput | 
					
						
						|  | from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update | 
					
						
						|  | from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel | 
					
						
						|  | from transformers.processing_utils import Unpack | 
					
						
						|  | from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torchdynamo_compiling | 
					
						
						|  | from transformers.utils.deprecation import deprecate_kwarg | 
					
						
						|  | from transformers.utils.generic import OutputRecorder, check_model_inputs | 
					
						
						|  | from transformers.models.qwen3_vl_moe.configuration_qwen3_vl_moe import Qwen3VLMoeConfig, Qwen3VLMoeTextConfig, Qwen3VLMoeVisionConfig | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @use_kernel_forward_from_hub("RMSNorm") | 
					
						
						|  | class Qwen3VLMoeTextRMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | """ | 
					
						
						|  | Qwen3VLMoeTextRMSNorm is equivalent to T5LayerNorm | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  | def extra_repr(self): | 
					
						
						|  | return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeTextRouter(nn.Linear): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config.hidden_size, config.num_experts, bias=False) | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.top_k = config.num_experts_per_tok | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | hidden_states = hidden_states.reshape(-1, self.hidden_size) | 
					
						
						|  | router_logits = super().forward(hidden_states) | 
					
						
						|  | routing_weights = torch.nn.functional.softmax(router_logits, dim=-1, dtype=torch.float) | 
					
						
						|  | routing_weights, router_indices = torch.topk(routing_weights, self.top_k, dim=-1) | 
					
						
						|  | routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True) | 
					
						
						|  | routing_weights = routing_weights.to(hidden_states.dtype) | 
					
						
						|  | router_weights = torch.zeros_like(router_logits).scatter_(1, router_indices, routing_weights) | 
					
						
						|  | return router_weights, router_logits, router_indices | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeTextExperts(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.num_experts = config.num_experts | 
					
						
						|  | self.intermediate_size = config.moe_intermediate_size | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.expert_dim = self.intermediate_size | 
					
						
						|  |  | 
					
						
						|  | self.gate_up_projs = nn.ModuleList([nn.Linear(self.hidden_size, 2 * self.expert_dim, bias=False) for _ in range(self.num_experts)]) | 
					
						
						|  |  | 
					
						
						|  | self.down_projs = nn.ModuleList([nn.Linear(self.expert_dim, self.hidden_size, bias=False) for _ in range(self.num_experts)]) | 
					
						
						|  | self.act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, hidden_states: torch.Tensor, routing_weights: torch.Tensor, router_indices: torch.Tensor | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | When training it is more efficient to just loop over the experts and compute the output for each expert | 
					
						
						|  | as otherwise the memory would explode. | 
					
						
						|  |  | 
					
						
						|  | For inference we can sacrifice some memory and compute the output for all experts at once. By repeating the inputs. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (torch.Tensor): (batch_size * token_num, hidden_size) | 
					
						
						|  | routing_weights (torch.Tensor): (batch_size * token_num, num_experts) | 
					
						
						|  | router_indices (torch.Tensor): (batch_size * token_num, top_k) | 
					
						
						|  | Returns: | 
					
						
						|  | torch.Tensor | 
					
						
						|  | """ | 
					
						
						|  | batch_size = hidden_states.shape[0] | 
					
						
						|  | hidden_states = hidden_states.reshape(-1, self.hidden_size) | 
					
						
						|  | if self.training: | 
					
						
						|  | next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device) | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | expert_mask = torch.nn.functional.one_hot(router_indices, num_classes=self.num_experts) | 
					
						
						|  | expert_mask = expert_mask.permute(2, 1, 0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero() | 
					
						
						|  | for expert_idx in expert_hit[:]: | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | _, token_idx = torch.where(expert_mask[expert_idx[0]]) | 
					
						
						|  | current_state = hidden_states[token_idx] | 
					
						
						|  |  | 
					
						
						|  | gate_up = self.gate_up_projs[expert_idx](current_state) | 
					
						
						|  | gate, up = gate_up.chunk(2, dim=-1) | 
					
						
						|  | gated_output = up * self.act_fn(gate) | 
					
						
						|  |  | 
					
						
						|  | out = self.down_projs[expert_idx](gated_output) | 
					
						
						|  | weighted_output = out[0] * routing_weights[token_idx, expert_idx, None] | 
					
						
						|  | next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype)) | 
					
						
						|  | next_states = next_states.view(batch_size, -1, self.hidden_size) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = hidden_states.repeat(self.num_experts, 1) | 
					
						
						|  | hidden_states = hidden_states.view(self.num_experts, -1, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | gate_up = torch.stack([proj(hidden_states[i]) for i, proj in enumerate(self.gate_up_projs)]) | 
					
						
						|  | gate, up = gate_up.chunk(2, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | next_states = torch.stack([proj(up[i] * self.act_fn(gate[i])) for i, proj in enumerate(self.down_projs)]) | 
					
						
						|  | next_states = next_states.reshape(self.num_experts, batch_size, -1, self.hidden_size) | 
					
						
						|  | next_states = ( | 
					
						
						|  | next_states * routing_weights.transpose(0, 1).view(self.num_experts, batch_size, -1)[..., None] | 
					
						
						|  | ) | 
					
						
						|  | next_states = next_states.sum(dim=0) | 
					
						
						|  | return next_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeTextSparseMoeBlock(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_experts = config.num_experts | 
					
						
						|  | self.gate = Qwen3VLMoeTextRouter(config) | 
					
						
						|  | self.experts = Qwen3VLMoeTextExperts(config) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | router_weights, router_logits, router_indices = self.gate(hidden_states) | 
					
						
						|  | routed_out = self.experts(hidden_states, router_weights, router_indices) | 
					
						
						|  | return routed_out, router_logits | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def eager_attention_forward( | 
					
						
						|  | module: nn.Module, | 
					
						
						|  | query: torch.Tensor, | 
					
						
						|  | key: torch.Tensor, | 
					
						
						|  | value: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor], | 
					
						
						|  | scaling: float, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | **kwargs: Unpack[TransformersKwargs], | 
					
						
						|  | ): | 
					
						
						|  | key_states = repeat_kv(key, module.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value, module.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | 
					
						
						|  | attn_weights = attn_weights + causal_mask | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | position_ids (`torch.Tensor`, *optional*): | 
					
						
						|  | Deprecated and unused. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | cos = cos.unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin.unsqueeze(unsqueeze_dim) | 
					
						
						|  | q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
						
						|  | k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeTextAttention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Qwen3VLMoeTextConfig, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) | 
					
						
						|  | self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads | 
					
						
						|  | self.scaling = self.head_dim**-0.5 | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  | self.is_causal = True | 
					
						
						|  |  | 
					
						
						|  | self.q_proj = nn.Linear( | 
					
						
						|  | config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias | 
					
						
						|  | ) | 
					
						
						|  | self.k_proj = nn.Linear( | 
					
						
						|  | config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias | 
					
						
						|  | ) | 
					
						
						|  | self.v_proj = nn.Linear( | 
					
						
						|  | config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias | 
					
						
						|  | ) | 
					
						
						|  | self.o_proj = nn.Linear( | 
					
						
						|  | config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias | 
					
						
						|  | ) | 
					
						
						|  | self.q_norm = Qwen3VLMoeTextRMSNorm( | 
					
						
						|  | self.head_dim, eps=config.rms_norm_eps | 
					
						
						|  | ) | 
					
						
						|  | self.k_norm = Qwen3VLMoeTextRMSNorm( | 
					
						
						|  | self.head_dim, eps=config.rms_norm_eps | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | position_embeddings: tuple[torch.Tensor, torch.Tensor], | 
					
						
						|  | attention_mask: Optional[torch.Tensor], | 
					
						
						|  | past_key_values: Optional[Cache] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | **kwargs: Unpack[FlashAttentionKwargs], | 
					
						
						|  | ) -> tuple[torch.Tensor, Optional[torch.Tensor]]: | 
					
						
						|  | input_shape = hidden_states.shape[:-1] | 
					
						
						|  | hidden_shape = (*input_shape, -1, self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) | 
					
						
						|  | key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) | 
					
						
						|  | value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = position_embeddings | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  |  | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | attention_interface: Callable = eager_attention_forward | 
					
						
						|  | if self.config._attn_implementation != "eager": | 
					
						
						|  | attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] | 
					
						
						|  |  | 
					
						
						|  | attn_output, attn_weights = attention_interface( | 
					
						
						|  | self, | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | dropout=0.0 if not self.training else self.attention_dropout, | 
					
						
						|  | scaling=self.scaling, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(*input_shape, -1).contiguous() | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  | return attn_output, attn_weights | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeTextMLP(nn.Module): | 
					
						
						|  | def __init__(self, config, intermediate_size=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size | 
					
						
						|  | self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | 
					
						
						|  | self.act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | 
					
						
						|  | return down_proj | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeTextDecoderLayer(GradientCheckpointingLayer): | 
					
						
						|  | def __init__(self, config: Qwen3VLMoeTextConfig, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.self_attn = Qwen3VLMoeTextAttention(config, layer_idx) | 
					
						
						|  |  | 
					
						
						|  | if (layer_idx not in config.mlp_only_layers) and ( | 
					
						
						|  | config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0 | 
					
						
						|  | ): | 
					
						
						|  | self.mlp = Qwen3VLMoeTextSparseMoeBlock(config) | 
					
						
						|  | else: | 
					
						
						|  | self.mlp = Qwen3VLMoeTextMLP(config, intermediate_size=config.intermediate_size) | 
					
						
						|  |  | 
					
						
						|  | self.input_layernorm = Qwen3VLMoeTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.post_attention_layernorm = Qwen3VLMoeTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | position_embeddings: tuple[torch.Tensor, torch.Tensor], | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Cache] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | **kwargs: Unpack[FlashAttentionKwargs], | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
						
						|  | `(batch, sequence_length)` where padding elements are indicated by 0. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | output_router_logits (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the logits of all the routers. They are useful for computing the router loss, | 
					
						
						|  | and should not be returned during inference. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
						
						|  | (see `past_key_values`). | 
					
						
						|  | past_key_values (`Cache`, *optional*): cached past key and value projection states | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence. | 
					
						
						|  | position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): | 
					
						
						|  | Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, | 
					
						
						|  | with `head_dim` being the embedding dimension of each attention head. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | 
					
						
						|  | into the model | 
					
						
						|  | """ | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.input_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, _ = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(hidden_states, tuple): | 
					
						
						|  | hidden_states, _ = hidden_states | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @auto_docstring | 
					
						
						|  | class Qwen3VLMoePreTrainedModel(PreTrainedModel): | 
					
						
						|  | config: Qwen3VLMoeConfig | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["Qwen3VLMoeTextDecoderLayer", "Qwen3VLMoeVisionBlock"] | 
					
						
						|  | _skip_keys_device_placement = ["past_key_values"] | 
					
						
						|  | _supports_flash_attn = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  | _supports_flex_attn = True | 
					
						
						|  | _can_compile_fullgraph = False | 
					
						
						|  | _supports_attention_backend = True | 
					
						
						|  | _can_record_outputs = { | 
					
						
						|  | "router_logits": OutputRecorder(Qwen3VLMoeTextSparseMoeBlock, index=1), | 
					
						
						|  | "hidden_states": Qwen3VLMoeTextDecoderLayer, | 
					
						
						|  | "attentions": Qwen3VLMoeTextAttention, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | """Initialize the weights.""" | 
					
						
						|  | super()._init_weights(module) | 
					
						
						|  | if hasattr(self.config, "initializer_range"): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | else: | 
					
						
						|  | std = getattr(self.config.get_text_config(), "initializer_range", 0.02) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeVisionMLP(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.intermediate_size = config.intermediate_size | 
					
						
						|  | self.linear_fc1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) | 
					
						
						|  | self.linear_fc2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=True) | 
					
						
						|  | self.act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_state): | 
					
						
						|  | return self.linear_fc2(self.act_fn(self.linear_fc1(hidden_state))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeVisionPatchEmbed(nn.Module): | 
					
						
						|  | def __init__(self, config) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.patch_size = config.patch_size | 
					
						
						|  | self.temporal_patch_size = config.temporal_patch_size | 
					
						
						|  | self.in_channels = config.in_channels | 
					
						
						|  | self.embed_dim = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size] | 
					
						
						|  | self.proj = nn.Conv3d(self.in_channels, self.embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=True) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | target_dtype = self.proj.weight.dtype | 
					
						
						|  | hidden_states = hidden_states.view( | 
					
						
						|  | -1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeVisionRotaryEmbedding(nn.Module): | 
					
						
						|  | inv_freq: torch.Tensor | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, dim: int, theta: float = 10000.0) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, seqlen: int) -> torch.Tensor: | 
					
						
						|  | seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) | 
					
						
						|  | freqs = torch.outer(seq, self.inv_freq) | 
					
						
						|  | return freqs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeVisionPatchMerger(nn.Module): | 
					
						
						|  | def __init__(self, config: Qwen3VLMoeVisionConfig, use_postshuffle_norm=False) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size * (config.spatial_merge_size**2) | 
					
						
						|  | self.use_postshuffle_norm = use_postshuffle_norm | 
					
						
						|  | self.norm = nn.LayerNorm(self.hidden_size if use_postshuffle_norm else config.hidden_size, eps=1e-6) | 
					
						
						|  | self.linear_fc1 = nn.Linear(self.hidden_size, self.hidden_size) | 
					
						
						|  | self.act_fn = nn.GELU() | 
					
						
						|  | self.linear_fc2 = nn.Linear(self.hidden_size, config.out_hidden_size) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | x = self.norm(x.view(-1, self.hidden_size) if self.use_postshuffle_norm else x).view(-1, self.hidden_size) | 
					
						
						|  | x = self.linear_fc2(self.act_fn(self.linear_fc1(x))) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb_vision( | 
					
						
						|  | q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor | 
					
						
						|  | ) -> tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  | orig_q_dtype = q.dtype | 
					
						
						|  | orig_k_dtype = k.dtype | 
					
						
						|  | q, k = q.float(), k.float() | 
					
						
						|  | cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float() | 
					
						
						|  | q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
						
						|  | k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  | q_embed = q_embed.to(orig_q_dtype) | 
					
						
						|  | k_embed = k_embed.to(orig_k_dtype) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeVisionAttention(nn.Module): | 
					
						
						|  | def __init__(self, config: Qwen3VLMoeVisionConfig) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dim = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_heads | 
					
						
						|  | self.head_dim = self.dim // self.num_heads | 
					
						
						|  | self.num_key_value_groups = 1 | 
					
						
						|  | self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True) | 
					
						
						|  | self.proj = nn.Linear(self.dim, self.dim) | 
					
						
						|  | self.scaling = self.head_dim**-0.5 | 
					
						
						|  | self.config = config | 
					
						
						|  | self.attention_dropout = 0.0 | 
					
						
						|  | self.is_causal = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | cu_seqlens: torch.Tensor, | 
					
						
						|  | rotary_pos_emb: Optional[torch.Tensor] = None, | 
					
						
						|  | position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | seq_length = hidden_states.shape[0] | 
					
						
						|  | query_states, key_states, value_states = ( | 
					
						
						|  | self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) | 
					
						
						|  | ) | 
					
						
						|  | cos, sin = position_embeddings | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(0, 1).unsqueeze(0) | 
					
						
						|  | key_states = key_states.transpose(0, 1).unsqueeze(0) | 
					
						
						|  | value_states = value_states.transpose(0, 1).unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | attention_interface: Callable = eager_attention_forward | 
					
						
						|  | if self.config._attn_implementation != "eager": | 
					
						
						|  | attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] | 
					
						
						|  |  | 
					
						
						|  | if self.config._attn_implementation == "flash_attention_2": | 
					
						
						|  |  | 
					
						
						|  | max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max() | 
					
						
						|  | attn_output, _ = attention_interface( | 
					
						
						|  | self, | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | scaling=self.scaling, | 
					
						
						|  | dropout=0.0 if not self.training else self.attention_dropout, | 
					
						
						|  | cu_seq_lens_q=cu_seqlens, | 
					
						
						|  | cu_seq_lens_k=cu_seqlens, | 
					
						
						|  | max_length_q=max_seqlen, | 
					
						
						|  | max_length_k=max_seqlen, | 
					
						
						|  | is_causal=False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | lengths = cu_seqlens[1:] - cu_seqlens[:-1] | 
					
						
						|  | splits = [ | 
					
						
						|  | torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | attn_outputs = [ | 
					
						
						|  | attention_interface( | 
					
						
						|  | self, | 
					
						
						|  | q, | 
					
						
						|  | k, | 
					
						
						|  | v, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | scaling=self.scaling, | 
					
						
						|  | dropout=0.0 if not self.training else self.attention_dropout, | 
					
						
						|  | is_causal=False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | )[0] | 
					
						
						|  | for q, k, v in zip(*splits) | 
					
						
						|  | ] | 
					
						
						|  | attn_output = torch.cat(attn_outputs, dim=1) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(seq_length, -1).contiguous() | 
					
						
						|  | attn_output = self.proj(attn_output) | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeVisionBlock(GradientCheckpointingLayer): | 
					
						
						|  | def __init__(self, config, attn_implementation: str = "sdpa") -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.norm1 = nn.LayerNorm(config.hidden_size, eps=1e-6) | 
					
						
						|  | self.norm2 = nn.LayerNorm(config.hidden_size, eps=1e-6) | 
					
						
						|  | self.attn = Qwen3VLMoeVisionAttention(config=config) | 
					
						
						|  | self.mlp = Qwen3VLMoeVisionMLP(config=config) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | cu_seqlens: torch.Tensor, | 
					
						
						|  | rotary_pos_emb: Optional[torch.Tensor] = None, | 
					
						
						|  | position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | hidden_states = hidden_states + self.attn( | 
					
						
						|  | self.norm1(hidden_states), | 
					
						
						|  | cu_seqlens=cu_seqlens, | 
					
						
						|  | rotary_pos_emb=rotary_pos_emb, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeVisionModel(Qwen3VLMoePreTrainedModel): | 
					
						
						|  | config: Qwen3VLMoeVisionConfig | 
					
						
						|  | _no_split_modules = ["Qwen3VLMoeVisionBlock"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config, *inputs, **kwargs) -> None: | 
					
						
						|  | super().__init__(config, *inputs, **kwargs) | 
					
						
						|  | self.spatial_merge_size = config.spatial_merge_size | 
					
						
						|  | self.patch_size = config.patch_size | 
					
						
						|  | self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size | 
					
						
						|  |  | 
					
						
						|  | self.patch_embed = Qwen3VLMoeVisionPatchEmbed( | 
					
						
						|  | config=config, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.pos_embed = nn.Embedding(config.num_position_embeddings, config.hidden_size) | 
					
						
						|  | self.num_grid_per_side = int(config.num_position_embeddings**0.5) | 
					
						
						|  |  | 
					
						
						|  | head_dim = config.hidden_size // config.num_heads | 
					
						
						|  | self.rotary_pos_emb = Qwen3VLMoeVisionRotaryEmbedding(head_dim // 2) | 
					
						
						|  |  | 
					
						
						|  | self.blocks = nn.ModuleList([Qwen3VLMoeVisionBlock(config) for _ in range(config.depth)]) | 
					
						
						|  | self.merger = Qwen3VLMoeVisionPatchMerger( | 
					
						
						|  | config=config, | 
					
						
						|  | use_postshuffle_norm=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.deepstack_visual_indexes = config.deepstack_visual_indexes | 
					
						
						|  | self.deepstack_merger_list = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | Qwen3VLMoeVisionPatchMerger( | 
					
						
						|  | config=config, | 
					
						
						|  | use_postshuffle_norm=True, | 
					
						
						|  | ) | 
					
						
						|  | for _ in range(len(config.deepstack_visual_indexes)) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | merge_size = self.spatial_merge_size | 
					
						
						|  |  | 
					
						
						|  | max_hw = int(grid_thw[:, 1:].max().item()) | 
					
						
						|  | freq_table = self.rotary_pos_emb(max_hw) | 
					
						
						|  | device = freq_table.device | 
					
						
						|  |  | 
					
						
						|  | total_tokens = int(torch.prod(grid_thw, dim=1).sum().item()) | 
					
						
						|  | pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device) | 
					
						
						|  |  | 
					
						
						|  | offset = 0 | 
					
						
						|  | for num_frames, height, width in grid_thw: | 
					
						
						|  | merged_h, merged_w = height // merge_size, width // merge_size | 
					
						
						|  |  | 
					
						
						|  | block_rows = torch.arange(merged_h, device=device) | 
					
						
						|  | block_cols = torch.arange(merged_w, device=device) | 
					
						
						|  | intra_row = torch.arange(merge_size, device=device) | 
					
						
						|  | intra_col = torch.arange(merge_size, device=device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | row_idx = block_rows[:, None, None, None] * merge_size + intra_row[None, None, :, None] | 
					
						
						|  | col_idx = block_cols[None, :, None, None] * merge_size + intra_col[None, None, None, :] | 
					
						
						|  |  | 
					
						
						|  | row_idx = row_idx.expand(merged_h, merged_w, merge_size, merge_size).reshape(-1) | 
					
						
						|  | col_idx = col_idx.expand(merged_h, merged_w, merge_size, merge_size).reshape(-1) | 
					
						
						|  |  | 
					
						
						|  | coords = torch.stack((row_idx, col_idx), dim=-1) | 
					
						
						|  |  | 
					
						
						|  | if num_frames > 1: | 
					
						
						|  | coords = coords.repeat(num_frames, 1) | 
					
						
						|  |  | 
					
						
						|  | num_tokens = coords.shape[0] | 
					
						
						|  | pos_ids[offset : offset + num_tokens] = coords | 
					
						
						|  | offset += num_tokens | 
					
						
						|  |  | 
					
						
						|  | embeddings = freq_table[pos_ids] | 
					
						
						|  | embeddings = embeddings.flatten(1) | 
					
						
						|  | return embeddings | 
					
						
						|  |  | 
					
						
						|  | def fast_pos_embed_interpolate(self, grid_thw): | 
					
						
						|  | grid_ts, grid_hs, grid_ws = grid_thw[:, 0], grid_thw[:, 1], grid_thw[:, 2] | 
					
						
						|  |  | 
					
						
						|  | idx_list = [[] for _ in range(4)] | 
					
						
						|  | weight_list = [[] for _ in range(4)] | 
					
						
						|  |  | 
					
						
						|  | for t, h, w in zip(grid_ts, grid_hs, grid_ws): | 
					
						
						|  | h_idxs = torch.linspace(0, self.num_grid_per_side - 1, h) | 
					
						
						|  | w_idxs = torch.linspace(0, self.num_grid_per_side - 1, w) | 
					
						
						|  |  | 
					
						
						|  | h_idxs_floor = h_idxs.int() | 
					
						
						|  | w_idxs_floor = w_idxs.int() | 
					
						
						|  | h_idxs_ceil = (h_idxs.int() + 1).clip(max=self.num_grid_per_side - 1) | 
					
						
						|  | w_idxs_ceil = (w_idxs.int() + 1).clip(max=self.num_grid_per_side - 1) | 
					
						
						|  |  | 
					
						
						|  | dh = h_idxs - h_idxs_floor | 
					
						
						|  | dw = w_idxs - w_idxs_floor | 
					
						
						|  |  | 
					
						
						|  | base_h = h_idxs_floor * self.num_grid_per_side | 
					
						
						|  | base_h_ceil = h_idxs_ceil * self.num_grid_per_side | 
					
						
						|  |  | 
					
						
						|  | indices = [ | 
					
						
						|  | (base_h[None].T + w_idxs_floor[None]).flatten(), | 
					
						
						|  | (base_h[None].T + w_idxs_ceil[None]).flatten(), | 
					
						
						|  | (base_h_ceil[None].T + w_idxs_floor[None]).flatten(), | 
					
						
						|  | (base_h_ceil[None].T + w_idxs_ceil[None]).flatten(), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | weights = [ | 
					
						
						|  | ((1 - dh)[None].T * (1 - dw)[None]).flatten(), | 
					
						
						|  | ((1 - dh)[None].T * dw[None]).flatten(), | 
					
						
						|  | (dh[None].T * (1 - dw)[None]).flatten(), | 
					
						
						|  | (dh[None].T * dw[None]).flatten(), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | for i in range(4): | 
					
						
						|  | idx_list[i].extend(indices[i].tolist()) | 
					
						
						|  | weight_list[i].extend(weights[i].tolist()) | 
					
						
						|  |  | 
					
						
						|  | idx_tensor = torch.tensor(idx_list, dtype=torch.long, device=self.pos_embed.weight.device) | 
					
						
						|  | weight_tensor = torch.tensor( | 
					
						
						|  | weight_list, dtype=self.pos_embed.weight.dtype, device=self.pos_embed.weight.device | 
					
						
						|  | ) | 
					
						
						|  | pos_embeds = self.pos_embed(idx_tensor) * weight_tensor[:, :, None] | 
					
						
						|  | patch_pos_embeds = pos_embeds[0] + pos_embeds[1] + pos_embeds[2] + pos_embeds[3] | 
					
						
						|  |  | 
					
						
						|  | patch_pos_embeds = patch_pos_embeds.split([h * w for h, w in zip(grid_hs, grid_ws)]) | 
					
						
						|  |  | 
					
						
						|  | patch_pos_embeds_permute = [] | 
					
						
						|  | merge_size = self.config.spatial_merge_size | 
					
						
						|  | for pos_embed, t, h, w in zip(patch_pos_embeds, grid_ts, grid_hs, grid_ws): | 
					
						
						|  | pos_embed = pos_embed.repeat(t, 1) | 
					
						
						|  | pos_embed = ( | 
					
						
						|  | pos_embed.view(t, h // merge_size, merge_size, w // merge_size, merge_size, -1) | 
					
						
						|  | .permute(0, 1, 3, 2, 4, 5) | 
					
						
						|  | .flatten(0, 4) | 
					
						
						|  | ) | 
					
						
						|  | patch_pos_embeds_permute.append(pos_embed) | 
					
						
						|  | patch_pos_embeds = torch.cat(patch_pos_embeds_permute) | 
					
						
						|  | return patch_pos_embeds | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`): | 
					
						
						|  | The final hidden states of the model. | 
					
						
						|  | grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`): | 
					
						
						|  | The temporal, height and width of feature shape of each image in LLM. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.Tensor`: hidden_states. | 
					
						
						|  | """ | 
					
						
						|  | hidden_states = self.patch_embed(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | pos_embeds = self.fast_pos_embed_interpolate(grid_thw) | 
					
						
						|  | hidden_states = hidden_states + pos_embeds | 
					
						
						|  |  | 
					
						
						|  | rotary_pos_emb = self.rot_pos_emb(grid_thw) | 
					
						
						|  |  | 
					
						
						|  | seq_len, _ = hidden_states.size() | 
					
						
						|  | hidden_states = hidden_states.reshape(seq_len, -1) | 
					
						
						|  | rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1) | 
					
						
						|  | emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) | 
					
						
						|  | position_embeddings = (emb.cos(), emb.sin()) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum( | 
					
						
						|  | dim=0, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, | 
					
						
						|  | ) | 
					
						
						|  | cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) | 
					
						
						|  |  | 
					
						
						|  | deepstack_feature_lists = [] | 
					
						
						|  | for layer_num, blk in enumerate(self.blocks): | 
					
						
						|  | hidden_states = blk( | 
					
						
						|  | hidden_states, | 
					
						
						|  | cu_seqlens=cu_seqlens, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | if layer_num in self.deepstack_visual_indexes: | 
					
						
						|  | deepstack_feature = self.deepstack_merger_list[self.deepstack_visual_indexes.index(layer_num)]( | 
					
						
						|  | hidden_states | 
					
						
						|  | ) | 
					
						
						|  | deepstack_feature_lists.append(deepstack_feature) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.merger(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, deepstack_feature_lists | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeTextRotaryEmbedding(nn.Module): | 
					
						
						|  | inv_freq: torch.Tensor | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Qwen3VLMoeTextConfig, device=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | if hasattr(config, "rope_scaling") and config.rope_scaling is not None: | 
					
						
						|  | self.rope_type = config.rope_scaling.get("rope_type", "default") | 
					
						
						|  | else: | 
					
						
						|  | self.rope_type = "default" | 
					
						
						|  | self.max_seq_len_cached = config.max_position_embeddings | 
					
						
						|  | self.original_max_seq_len = config.max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | self.config = config | 
					
						
						|  | self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | 
					
						
						|  |  | 
					
						
						|  | inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  | self.original_inv_freq = self.inv_freq | 
					
						
						|  |  | 
					
						
						|  | self.mrope_section = config.rope_scaling.get("mrope_section", [24, 20, 20]) | 
					
						
						|  |  | 
					
						
						|  | def apply_interleaved_mrope(self, freqs, mrope_section): | 
					
						
						|  | """Apply interleaved MRoPE to 3D rotary embeddings. | 
					
						
						|  | Reorganizes frequency layout from chunked [TTT...HHH...WWW] to | 
					
						
						|  | interleaved [THTHWHTHW...TT], preserving frequency continuity. | 
					
						
						|  | args: | 
					
						
						|  | x: (3, bs, seq_len, head_dim // 2) | 
					
						
						|  | mrope_section: (3,) | 
					
						
						|  | returns: | 
					
						
						|  | x_t: (bs, seq_len, head_dim // 2) | 
					
						
						|  | """ | 
					
						
						|  | freqs_t = freqs[0] | 
					
						
						|  | for dim, offset in enumerate((1, 2), start=1): | 
					
						
						|  | length = mrope_section[dim] * 3 | 
					
						
						|  | idx = slice(offset, length, 3) | 
					
						
						|  | freqs_t[..., idx] = freqs[dim, ..., idx] | 
					
						
						|  | return freqs_t | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @dynamic_rope_update | 
					
						
						|  | def forward(self, x, position_ids): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if position_ids.ndim == 2: | 
					
						
						|  | position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1) | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1) | 
					
						
						|  | position_ids_expanded = position_ids[:, :, None, :].float() | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3) | 
					
						
						|  | freqs = self.apply_interleaved_mrope(freqs, self.mrope_section) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | cos = emb.cos() * self.attention_scaling | 
					
						
						|  | sin = emb.sin() * self.attention_scaling | 
					
						
						|  |  | 
					
						
						|  | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @auto_docstring( | 
					
						
						|  | custom_intro=( | 
					
						
						|  | "Text part of Qwen3VLMoe, " | 
					
						
						|  | "not a pure text-only model, as DeepStack integrates visual features into the early hidden states." | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | class Qwen3VLMoeTextModel(Qwen3VLMoePreTrainedModel): | 
					
						
						|  | config: Qwen3VLMoeTextConfig | 
					
						
						|  | _no_split_modules = ["Qwen3VLMoeTextDecoderLayer"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Qwen3VLMoeTextConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | [Qwen3VLMoeTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self.norm = Qwen3VLMoeTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.rotary_emb = Qwen3VLMoeTextRotaryEmbedding(config=config) | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @check_model_inputs | 
					
						
						|  | @auto_docstring | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Cache] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  |  | 
					
						
						|  | visual_pos_masks: Optional[torch.Tensor] = None, | 
					
						
						|  | deepstack_visual_embeds: Optional[list[torch.Tensor]] = None, | 
					
						
						|  | **kwargs: Unpack[FlashAttentionKwargs], | 
					
						
						|  | ) -> Union[tuple, BaseModelOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | visual_pos_masks (`torch.Tensor` of shape `(batch_size, seqlen)`, *optional*): | 
					
						
						|  | The mask of the visual positions. | 
					
						
						|  | deepstack_visual_embeds (`list[torch.Tensor]`, *optional*): | 
					
						
						|  | The deepstack visual embeddings. The shape is (num_layers, visual_seqlen, embed_dim). | 
					
						
						|  | The feature is extracted from the different visual encoder layers, and fed to the decoder | 
					
						
						|  | hidden states. It's from the paper DeepStack(https://arxiv.org/abs/2406.04334). | 
					
						
						|  | """ | 
					
						
						|  | if (input_ids is None) ^ (inputs_embeds is not None): | 
					
						
						|  | raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if use_cache and past_key_values is None and not torch.jit.is_tracing(): | 
					
						
						|  | past_key_values = DynamicCache(config=self.config) | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embed_tokens(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if cache_position is None: | 
					
						
						|  | past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
						
						|  | cache_position = torch.arange( | 
					
						
						|  | past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1) | 
					
						
						|  | elif position_ids.ndim == 2: | 
					
						
						|  | position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1) | 
					
						
						|  |  | 
					
						
						|  | if position_ids.ndim == 3 and position_ids.shape[0] == 4: | 
					
						
						|  | text_position_ids = position_ids[0] | 
					
						
						|  | position_ids = position_ids[1:] | 
					
						
						|  | else: | 
					
						
						|  | text_position_ids = position_ids[0] | 
					
						
						|  |  | 
					
						
						|  | attention_mask = create_causal_mask( | 
					
						
						|  | config=self.config, | 
					
						
						|  | input_embeds=inputs_embeds, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | position_ids=text_position_ids, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | position_embeddings = self.rotary_emb(hidden_states, position_ids) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for layer_idx, decoder_layer in enumerate(self.layers): | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=text_position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = layer_outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if deepstack_visual_embeds is not None and layer_idx in range(len(deepstack_visual_embeds)): | 
					
						
						|  | hidden_states = self._deepstack_process( | 
					
						
						|  | hidden_states, | 
					
						
						|  | visual_pos_masks, | 
					
						
						|  | deepstack_visual_embeds[layer_idx], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _deepstack_process( | 
					
						
						|  | self, hidden_states: torch.Tensor, visual_pos_masks: torch.Tensor, visual_embeds: torch.Tensor | 
					
						
						|  | ): | 
					
						
						|  | visual_pos_masks = visual_pos_masks.to(hidden_states.device) | 
					
						
						|  | visual_embeds = visual_embeds.to(hidden_states.device, hidden_states.dtype) | 
					
						
						|  | local_this = hidden_states[visual_pos_masks, :].clone() + visual_embeds | 
					
						
						|  | hidden_states[visual_pos_masks, :] = local_this | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | @auto_docstring( | 
					
						
						|  | custom_intro=""" | 
					
						
						|  | Base class for Llava outputs, with hidden states and attentions. | 
					
						
						|  | """ | 
					
						
						|  | ) | 
					
						
						|  | class Qwen3VLMoeModelOutputWithPast(ModelOutput): | 
					
						
						|  | r""" | 
					
						
						|  | past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
						
						|  | It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). | 
					
						
						|  |  | 
					
						
						|  | Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | 
					
						
						|  | `past_key_values` input) to speed up sequential decoding. | 
					
						
						|  | rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): | 
					
						
						|  | The rope index difference between sequence length and multimodal rope. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | last_hidden_state: Optional[torch.FloatTensor] = None | 
					
						
						|  | past_key_values: Optional[Cache] = None | 
					
						
						|  | hidden_states: Optional[tuple[torch.FloatTensor]] = None | 
					
						
						|  | attentions: Optional[tuple[torch.FloatTensor]] = None | 
					
						
						|  | rope_deltas: Optional[torch.LongTensor] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @auto_docstring | 
					
						
						|  | class Qwen3VLMoeModel(Qwen3VLMoePreTrainedModel): | 
					
						
						|  | base_model_prefix = "" | 
					
						
						|  | _checkpoint_conversion_mapping = {} | 
					
						
						|  |  | 
					
						
						|  | accepts_loss_kwargs = False | 
					
						
						|  | config: Qwen3VLMoeConfig | 
					
						
						|  | _no_split_modules = ["Qwen3VLMoeTextDecoderLayer", "Qwen3VLMoeVisionBlock"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.visual = Qwen3VLMoeVisionModel._from_config(config.vision_config) | 
					
						
						|  | self.language_model = Qwen3VLMoeTextModel._from_config(config.text_config) | 
					
						
						|  | self.rope_deltas = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.language_model.get_input_embeddings() | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.language_model.set_input_embeddings(value) | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.language_model = decoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.language_model | 
					
						
						|  |  | 
					
						
						|  | def get_rope_index( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | image_grid_thw: Optional[torch.LongTensor] = None, | 
					
						
						|  | video_grid_thw: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | ) -> tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  | """Different from the original implementation, Qwen3VLMoe use timestamps rather than absolute time position ids.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if video_grid_thw is not None: | 
					
						
						|  | video_grid_thw = torch.repeat_interleave(video_grid_thw, video_grid_thw[:, 0], dim=0) | 
					
						
						|  | video_grid_thw[:, 0] = 1 | 
					
						
						|  |  | 
					
						
						|  | spatial_merge_size = self.config.vision_config.spatial_merge_size | 
					
						
						|  | image_token_id = self.config.image_token_id | 
					
						
						|  | video_token_id = self.config.video_token_id | 
					
						
						|  | vision_start_token_id = self.config.vision_start_token_id | 
					
						
						|  | mrope_position_deltas = [] | 
					
						
						|  | if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None): | 
					
						
						|  | total_input_ids = input_ids | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  | attention_mask = torch.ones_like(total_input_ids) | 
					
						
						|  | position_ids = torch.ones( | 
					
						
						|  | 3, | 
					
						
						|  | input_ids.shape[0], | 
					
						
						|  | input_ids.shape[1], | 
					
						
						|  | dtype=input_ids.dtype, | 
					
						
						|  | device=input_ids.device, | 
					
						
						|  | ) | 
					
						
						|  | image_index, video_index = 0, 0 | 
					
						
						|  | attention_mask = attention_mask.to(total_input_ids.device) | 
					
						
						|  | for i, input_ids in enumerate(total_input_ids): | 
					
						
						|  | input_ids = input_ids[attention_mask[i] == 1] | 
					
						
						|  | image_nums, video_nums = 0, 0 | 
					
						
						|  | vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1) | 
					
						
						|  | vision_tokens = input_ids[vision_start_indices + 1] | 
					
						
						|  | image_nums = (vision_tokens == image_token_id).sum() | 
					
						
						|  | video_nums = (vision_tokens == video_token_id).sum() | 
					
						
						|  | input_tokens = input_ids.tolist() | 
					
						
						|  | llm_pos_ids_list: list = [] | 
					
						
						|  | st = 0 | 
					
						
						|  | remain_images, remain_videos = image_nums, video_nums | 
					
						
						|  | for _ in range(image_nums + video_nums): | 
					
						
						|  | if image_token_id in input_tokens and remain_images > 0: | 
					
						
						|  | ed_image = input_tokens.index(image_token_id, st) | 
					
						
						|  | else: | 
					
						
						|  | ed_image = len(input_tokens) + 1 | 
					
						
						|  | if video_token_id in input_tokens and remain_videos > 0: | 
					
						
						|  | ed_video = input_tokens.index(video_token_id, st) | 
					
						
						|  | else: | 
					
						
						|  | ed_video = len(input_tokens) + 1 | 
					
						
						|  | if ed_image < ed_video: | 
					
						
						|  | t, h, w = ( | 
					
						
						|  | image_grid_thw[image_index][0], | 
					
						
						|  | image_grid_thw[image_index][1], | 
					
						
						|  | image_grid_thw[image_index][2], | 
					
						
						|  | ) | 
					
						
						|  | image_index += 1 | 
					
						
						|  | remain_images -= 1 | 
					
						
						|  | ed = ed_image | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | t, h, w = ( | 
					
						
						|  | video_grid_thw[video_index][0], | 
					
						
						|  | video_grid_thw[video_index][1], | 
					
						
						|  | video_grid_thw[video_index][2], | 
					
						
						|  | ) | 
					
						
						|  | video_index += 1 | 
					
						
						|  | remain_videos -= 1 | 
					
						
						|  | ed = ed_video | 
					
						
						|  | llm_grid_t, llm_grid_h, llm_grid_w = ( | 
					
						
						|  | t.item(), | 
					
						
						|  | h.item() // spatial_merge_size, | 
					
						
						|  | w.item() // spatial_merge_size, | 
					
						
						|  | ) | 
					
						
						|  | text_len = ed - st | 
					
						
						|  |  | 
					
						
						|  | st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 | 
					
						
						|  | llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten() | 
					
						
						|  | h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() | 
					
						
						|  | w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() | 
					
						
						|  | llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx) | 
					
						
						|  | st = ed + llm_grid_t * llm_grid_h * llm_grid_w | 
					
						
						|  |  | 
					
						
						|  | if st < len(input_tokens): | 
					
						
						|  | st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 | 
					
						
						|  | text_len = len(input_tokens) - st | 
					
						
						|  | llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) | 
					
						
						|  |  | 
					
						
						|  | llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) | 
					
						
						|  | position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device) | 
					
						
						|  | mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i])) | 
					
						
						|  | mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1) | 
					
						
						|  | return position_ids, mrope_position_deltas | 
					
						
						|  | else: | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
						
						|  | position_ids.masked_fill_(attention_mask == 0, 1) | 
					
						
						|  | position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device) | 
					
						
						|  | max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0] | 
					
						
						|  | mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1] | 
					
						
						|  | else: | 
					
						
						|  | position_ids = ( | 
					
						
						|  | torch.arange(input_ids.shape[1], device=input_ids.device) | 
					
						
						|  | .view(1, 1, -1) | 
					
						
						|  | .expand(3, input_ids.shape[0], -1) | 
					
						
						|  | ) | 
					
						
						|  | mrope_position_deltas = torch.zeros( | 
					
						
						|  | [input_ids.shape[0], 1], | 
					
						
						|  | device=input_ids.device, | 
					
						
						|  | dtype=input_ids.dtype, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return position_ids, mrope_position_deltas | 
					
						
						|  |  | 
					
						
						|  | def get_video_features( | 
					
						
						|  | self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Encodes videos into continuous embeddings that can be forwarded to the language model. The deepstack visual features are also returned. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): | 
					
						
						|  | The tensors corresponding to the input videos. | 
					
						
						|  | video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): | 
					
						
						|  | The temporal, height and width of feature shape of each video in LLM. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | return self.get_image_features(pixel_values_videos, video_grid_thw) | 
					
						
						|  |  | 
					
						
						|  | def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None): | 
					
						
						|  | """ | 
					
						
						|  | Encodes images into continuous embeddings that can be forwarded to the language model. The deepstack visual features are also returned. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): | 
					
						
						|  | The tensors corresponding to the input images. | 
					
						
						|  | image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): | 
					
						
						|  | The temporal, height and width of feature shape of each image in LLM. | 
					
						
						|  | """ | 
					
						
						|  | pixel_values = pixel_values.type(self.visual.dtype) | 
					
						
						|  | image_embeds, deepstack_image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw) | 
					
						
						|  | split_sizes = (image_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist() | 
					
						
						|  | image_embeds = torch.split(image_embeds, split_sizes) | 
					
						
						|  | return image_embeds, deepstack_image_embeds | 
					
						
						|  |  | 
					
						
						|  | def get_placeholder_mask( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor, | 
					
						
						|  | inputs_embeds: torch.FloatTensor, | 
					
						
						|  | image_features: Optional[torch.FloatTensor] = None, | 
					
						
						|  | video_features: Optional[torch.FloatTensor] = None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is | 
					
						
						|  | equal to the length of multimodal features. If the lengths are different, an error is raised. | 
					
						
						|  | """ | 
					
						
						|  | if input_ids is None: | 
					
						
						|  | special_image_mask = inputs_embeds == self.get_input_embeddings()( | 
					
						
						|  | torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) | 
					
						
						|  | ) | 
					
						
						|  | special_image_mask = special_image_mask.all(-1) | 
					
						
						|  | special_video_mask = inputs_embeds == self.get_input_embeddings()( | 
					
						
						|  | torch.tensor(self.config.video_token_id, dtype=torch.long, device=inputs_embeds.device) | 
					
						
						|  | ) | 
					
						
						|  | special_video_mask = special_video_mask.all(-1) | 
					
						
						|  | else: | 
					
						
						|  | special_image_mask = input_ids == self.config.image_token_id | 
					
						
						|  | special_video_mask = input_ids == self.config.video_token_id | 
					
						
						|  |  | 
					
						
						|  | n_image_tokens = special_image_mask.sum() | 
					
						
						|  | special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) | 
					
						
						|  | if image_features is not None and inputs_embeds[special_image_mask].numel() != image_features.numel(): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.shape[0]}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | n_video_tokens = special_video_mask.sum() | 
					
						
						|  | special_video_mask = special_video_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) | 
					
						
						|  | if video_features is not None and inputs_embeds[special_video_mask].numel() != video_features.numel(): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Videos features and video tokens do not match: tokens: {n_video_tokens}, features {video_features.shape[0]}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return special_image_mask, special_video_mask | 
					
						
						|  |  | 
					
						
						|  | @auto_docstring | 
					
						
						|  | @can_return_tuple | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Cache] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | pixel_values: Optional[torch.Tensor] = None, | 
					
						
						|  | pixel_values_videos: Optional[torch.FloatTensor] = None, | 
					
						
						|  | image_grid_thw: Optional[torch.LongTensor] = None, | 
					
						
						|  | video_grid_thw: Optional[torch.LongTensor] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | **kwargs: Unpack[TransformersKwargs], | 
					
						
						|  | ) -> Union[tuple, Qwen3VLMoeModelOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): | 
					
						
						|  | The temporal, height and width of feature shape of each image in LLM. | 
					
						
						|  | video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): | 
					
						
						|  | The temporal, height and width of feature shape of each video in LLM. | 
					
						
						|  | """ | 
					
						
						|  | if (input_ids is None) ^ (inputs_embeds is not None): | 
					
						
						|  | raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.get_input_embeddings()(input_ids) | 
					
						
						|  |  | 
					
						
						|  | image_mask = None | 
					
						
						|  | video_mask = None | 
					
						
						|  |  | 
					
						
						|  | if pixel_values is not None: | 
					
						
						|  | image_embeds, deepstack_image_embeds = self.get_image_features(pixel_values, image_grid_thw) | 
					
						
						|  | image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype) | 
					
						
						|  | image_mask, _ = self.get_placeholder_mask( | 
					
						
						|  | input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds | 
					
						
						|  | ) | 
					
						
						|  | inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds) | 
					
						
						|  |  | 
					
						
						|  | if pixel_values_videos is not None: | 
					
						
						|  | video_embeds, deepstack_video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw) | 
					
						
						|  | video_embeds = torch.cat(video_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype) | 
					
						
						|  | _, video_mask = self.get_placeholder_mask( | 
					
						
						|  | input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds | 
					
						
						|  | ) | 
					
						
						|  | inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds) | 
					
						
						|  |  | 
					
						
						|  | visual_pos_masks = None | 
					
						
						|  | deepstack_visual_embeds = None | 
					
						
						|  | if image_mask is not None and video_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | image_mask = image_mask[..., 0] | 
					
						
						|  | video_mask = video_mask[..., 0] | 
					
						
						|  | visual_pos_masks = image_mask | video_mask | 
					
						
						|  | deepstack_visual_embeds = [] | 
					
						
						|  | image_mask_joint = image_mask[visual_pos_masks] | 
					
						
						|  | video_mask_joint = video_mask[visual_pos_masks] | 
					
						
						|  | for img_embed, vid_embed in zip(deepstack_image_embeds, deepstack_video_embeds): | 
					
						
						|  | embed_joint = img_embed.new_zeros(visual_pos_masks.sum(), img_embed.shape[-1]).to(img_embed.device) | 
					
						
						|  | embed_joint[image_mask_joint, :] = img_embed | 
					
						
						|  | embed_joint[video_mask_joint, :] = vid_embed | 
					
						
						|  | deepstack_visual_embeds.append(embed_joint) | 
					
						
						|  | elif image_mask is not None: | 
					
						
						|  | image_mask = image_mask[..., 0] | 
					
						
						|  | visual_pos_masks = image_mask | 
					
						
						|  | deepstack_visual_embeds = deepstack_image_embeds | 
					
						
						|  | elif video_mask is not None: | 
					
						
						|  | video_mask = video_mask[..., 0] | 
					
						
						|  | visual_pos_masks = video_mask | 
					
						
						|  | deepstack_visual_embeds = deepstack_video_embeds | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | attention_mask_tensor = ( | 
					
						
						|  | attention_mask if not isinstance(attention_mask, dict) else attention_mask["full_attention"] | 
					
						
						|  | ) | 
					
						
						|  | if attention_mask_tensor is not None and attention_mask_tensor.ndim == 4: | 
					
						
						|  | attention_mask_tensor = torch.diagonal(attention_mask_tensor[:, 0], dim1=1, dim2=2) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask_tensor.dtype.is_floating_point: | 
					
						
						|  | attention_mask_tensor = attention_mask_tensor / torch.finfo(attention_mask_tensor.dtype).min | 
					
						
						|  | attention_mask_tensor = (1.0 - attention_mask_tensor).int() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prefill_compiled_stage = is_torchdynamo_compiling() and ( | 
					
						
						|  | (input_ids is not None and input_ids.shape[1] != 1) | 
					
						
						|  | or (inputs_embeds is not None and inputs_embeds.shape[1] != 1) | 
					
						
						|  | ) | 
					
						
						|  | prefill_noncompiled_stage = not is_torchdynamo_compiling() and ( | 
					
						
						|  | (cache_position is not None and cache_position[0] == 0) | 
					
						
						|  | or (past_key_values is None or past_key_values.get_seq_length() == 0) | 
					
						
						|  | ) | 
					
						
						|  | if (prefill_compiled_stage or prefill_noncompiled_stage) or self.rope_deltas is None: | 
					
						
						|  | position_ids, rope_deltas = self.get_rope_index( | 
					
						
						|  | input_ids, | 
					
						
						|  | image_grid_thw, | 
					
						
						|  | video_grid_thw, | 
					
						
						|  | attention_mask=attention_mask_tensor, | 
					
						
						|  | ) | 
					
						
						|  | self.rope_deltas = rope_deltas | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | batch_size, seq_length, _ = inputs_embeds.shape | 
					
						
						|  | delta = ( | 
					
						
						|  | (cache_position[0] + self.rope_deltas).to(inputs_embeds.device) | 
					
						
						|  | if cache_position is not None | 
					
						
						|  | else 0 | 
					
						
						|  | ) | 
					
						
						|  | position_ids = torch.arange(seq_length, device=inputs_embeds.device) | 
					
						
						|  | position_ids = position_ids.view(1, -1).expand(batch_size, -1) | 
					
						
						|  | if cache_position is not None: | 
					
						
						|  | delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0) | 
					
						
						|  | position_ids = position_ids.add(delta) | 
					
						
						|  | position_ids = position_ids.unsqueeze(0).expand(3, -1, -1) | 
					
						
						|  |  | 
					
						
						|  | outputs = self.language_model( | 
					
						
						|  | input_ids=None, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | visual_pos_masks=visual_pos_masks, | 
					
						
						|  | deepstack_visual_embeds=deepstack_visual_embeds, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return Qwen3VLMoeModelOutputWithPast( | 
					
						
						|  | last_hidden_state=outputs.last_hidden_state, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | rope_deltas=self.rope_deltas, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | @auto_docstring( | 
					
						
						|  | custom_intro=""" | 
					
						
						|  | Base class for Qwen3VLMoe causal language model (or autoregressive) outputs. | 
					
						
						|  | """ | 
					
						
						|  | ) | 
					
						
						|  | class Qwen3VLMoeCausalLMOutputWithPast(ModelOutput): | 
					
						
						|  | r""" | 
					
						
						|  | loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | 
					
						
						|  | Language modeling loss (for next-token prediction). | 
					
						
						|  | logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | 
					
						
						|  | Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | 
					
						
						|  | past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
						
						|  | It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). | 
					
						
						|  |  | 
					
						
						|  | Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | 
					
						
						|  | `past_key_values` input) to speed up sequential decoding. | 
					
						
						|  | rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): | 
					
						
						|  | The rope index difference between sequence length and multimodal rope. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | logits: Optional[torch.FloatTensor] = None | 
					
						
						|  | past_key_values: Optional[Cache] = None | 
					
						
						|  | hidden_states: Optional[tuple[torch.FloatTensor]] = None | 
					
						
						|  | attentions: Optional[tuple[torch.FloatTensor]] = None | 
					
						
						|  | rope_deltas: Optional[torch.LongTensor] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Qwen3VLMoeForConditionalGeneration(Qwen3VLMoePreTrainedModel, GenerationMixin): | 
					
						
						|  | _checkpoint_conversion_mapping = {} | 
					
						
						|  | _tied_weights_keys = ["lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | accepts_loss_kwargs = False | 
					
						
						|  | config: Qwen3VLMoeConfig | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = Qwen3VLMoeModel(config) | 
					
						
						|  | self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.get_input_embeddings() | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.set_input_embeddings(value) | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model.set_decoder(decoder) | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model.get_decoder() | 
					
						
						|  |  | 
					
						
						|  | def get_video_features( | 
					
						
						|  | self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None | 
					
						
						|  | ): | 
					
						
						|  | return self.model.get_video_features(pixel_values_videos, video_grid_thw) | 
					
						
						|  |  | 
					
						
						|  | def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None): | 
					
						
						|  | return self.model.get_image_features(pixel_values, image_grid_thw) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def language_model(self): | 
					
						
						|  | return self.model.language_model | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def visual(self): | 
					
						
						|  | return self.model.visual | 
					
						
						|  |  | 
					
						
						|  | @can_return_tuple | 
					
						
						|  | @auto_docstring | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Cache] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | pixel_values: Optional[torch.Tensor] = None, | 
					
						
						|  | pixel_values_videos: Optional[torch.FloatTensor] = None, | 
					
						
						|  | image_grid_thw: Optional[torch.LongTensor] = None, | 
					
						
						|  | video_grid_thw: Optional[torch.LongTensor] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | logits_to_keep: Union[int, torch.Tensor] = 0, | 
					
						
						|  | **kwargs: Unpack[TransformersKwargs], | 
					
						
						|  | ) -> Union[tuple, Qwen3VLMoeCausalLMOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
						
						|  | config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
						
						|  | image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): | 
					
						
						|  | The temporal, height and width of feature shape of each image in LLM. | 
					
						
						|  | video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): | 
					
						
						|  | The temporal, height and width of feature shape of each video in LLM. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  | TODO: Add example | 
					
						
						|  | """ | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | pixel_values_videos=pixel_values_videos, | 
					
						
						|  | image_grid_thw=image_grid_thw, | 
					
						
						|  | video_grid_thw=video_grid_thw, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep | 
					
						
						|  | logits = self.lm_head(hidden_states[:, slice_indices, :]) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size) | 
					
						
						|  |  | 
					
						
						|  | return Qwen3VLMoeCausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | rope_deltas=outputs.rope_deltas, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | cache_position=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | pixel_values=None, | 
					
						
						|  | pixel_values_videos=None, | 
					
						
						|  | image_grid_thw=None, | 
					
						
						|  | video_grid_thw=None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_inputs = super().prepare_inputs_for_generation( | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | pixel_values_videos=pixel_values_videos, | 
					
						
						|  | image_grid_thw=image_grid_thw, | 
					
						
						|  | video_grid_thw=video_grid_thw, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_inputs["position_ids"] = None | 
					
						
						|  |  | 
					
						
						|  | if cache_position[0] != 0: | 
					
						
						|  | model_inputs["pixel_values"] = None | 
					
						
						|  | model_inputs["pixel_values_videos"] = None | 
					
						
						|  |  | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | def _get_image_nums_and_video_nums( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor], | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | ) -> tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  | """ | 
					
						
						|  | Get the number of images and videos for each sample to calculate the separation length of the sample tensor. | 
					
						
						|  | These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`) | 
					
						
						|  | video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`) | 
					
						
						|  | """ | 
					
						
						|  | image_token_id = self.config.image_token_id | 
					
						
						|  | video_token_id = self.config.video_token_id | 
					
						
						|  | vision_start_token_id = self.config.vision_start_token_id | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is not None: | 
					
						
						|  | vision_start_mask = ( | 
					
						
						|  | inputs_embeds | 
					
						
						|  | == self.get_input_embeddings()( | 
					
						
						|  | torch.tensor(vision_start_token_id, dtype=torch.long, device=inputs_embeds.device) | 
					
						
						|  | ) | 
					
						
						|  | )[..., 0] | 
					
						
						|  | image_mask = ( | 
					
						
						|  | inputs_embeds | 
					
						
						|  | == self.get_input_embeddings()( | 
					
						
						|  | torch.tensor(image_token_id, dtype=torch.long, device=inputs_embeds.device) | 
					
						
						|  | ) | 
					
						
						|  | )[..., 0] | 
					
						
						|  | video_mask = ( | 
					
						
						|  | inputs_embeds | 
					
						
						|  | == self.get_input_embeddings()( | 
					
						
						|  | torch.tensor(video_token_id, dtype=torch.long, device=inputs_embeds.device) | 
					
						
						|  | ) | 
					
						
						|  | )[..., 0] | 
					
						
						|  | else: | 
					
						
						|  | vision_start_mask = input_ids == vision_start_token_id | 
					
						
						|  | image_mask = input_ids == image_token_id | 
					
						
						|  | video_mask = input_ids == video_token_id | 
					
						
						|  |  | 
					
						
						|  | vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1) | 
					
						
						|  | image_nums = torch.sum(vision_first_mask & image_mask, dim=1) | 
					
						
						|  | video_nums = torch.sum(vision_first_mask & video_mask, dim=1) | 
					
						
						|  |  | 
					
						
						|  | return image_nums, video_nums | 
					
						
						|  |  | 
					
						
						|  | def _expand_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | expand_size: int = 1, | 
					
						
						|  | is_encoder_decoder: bool = False, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | **model_kwargs, | 
					
						
						|  | ) -> tuple[torch.LongTensor, dict[str, Any]]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if expand_size == 1: | 
					
						
						|  | return input_ids, model_kwargs | 
					
						
						|  |  | 
					
						
						|  | visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"] | 
					
						
						|  |  | 
					
						
						|  | def _expand_dict_for_generation_visual(dict_to_expand): | 
					
						
						|  | image_grid_thw = model_kwargs.get("image_grid_thw", None) | 
					
						
						|  | video_grid_thw = model_kwargs.get("video_grid_thw", None) | 
					
						
						|  | image_nums, video_nums = self._get_image_nums_and_video_nums( | 
					
						
						|  | input_ids, inputs_embeds=model_kwargs.get("inputs_embeds", None) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _repeat_interleave_samples(x, lengths, repeat_times): | 
					
						
						|  | samples = torch.split(x, lengths) | 
					
						
						|  | repeat_args = [repeat_times] + [1] * (x.dim() - 1) | 
					
						
						|  | result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0) | 
					
						
						|  | return result | 
					
						
						|  |  | 
					
						
						|  | for key in dict_to_expand: | 
					
						
						|  | if key == "pixel_values": | 
					
						
						|  |  | 
					
						
						|  | samples = torch.split(image_grid_thw, list(image_nums)) | 
					
						
						|  |  | 
					
						
						|  | lengths = [torch.prod(sample, dim=1).sum() for sample in samples] | 
					
						
						|  | dict_to_expand[key] = _repeat_interleave_samples( | 
					
						
						|  | dict_to_expand[key], lengths=lengths, repeat_times=expand_size | 
					
						
						|  | ) | 
					
						
						|  | elif key == "image_grid_thw": | 
					
						
						|  |  | 
					
						
						|  | lengths = list(image_nums) | 
					
						
						|  | dict_to_expand[key] = _repeat_interleave_samples( | 
					
						
						|  | dict_to_expand[key], lengths=lengths, repeat_times=expand_size | 
					
						
						|  | ) | 
					
						
						|  | elif key == "pixel_values_videos": | 
					
						
						|  | samples = torch.split(video_grid_thw, list(video_nums)) | 
					
						
						|  | lengths = [torch.prod(sample, dim=1).sum() for sample in samples] | 
					
						
						|  | dict_to_expand[key] = _repeat_interleave_samples( | 
					
						
						|  | dict_to_expand[key], lengths=lengths, repeat_times=expand_size | 
					
						
						|  | ) | 
					
						
						|  | elif key == "video_grid_thw": | 
					
						
						|  | lengths = list(video_nums) | 
					
						
						|  | dict_to_expand[key] = _repeat_interleave_samples( | 
					
						
						|  | dict_to_expand[key], lengths=lengths, repeat_times=expand_size | 
					
						
						|  | ) | 
					
						
						|  | elif key == "second_per_grid_ts": | 
					
						
						|  | dict_to_expand[key] = _repeat_interleave_samples( | 
					
						
						|  | dict_to_expand[key], lengths=list(video_nums), repeat_times=expand_size | 
					
						
						|  | ) | 
					
						
						|  | return dict_to_expand | 
					
						
						|  |  | 
					
						
						|  | def _expand_dict_for_generation(dict_to_expand): | 
					
						
						|  | for key in dict_to_expand: | 
					
						
						|  | if ( | 
					
						
						|  | key != "cache_position" | 
					
						
						|  | and dict_to_expand[key] is not None | 
					
						
						|  | and isinstance(dict_to_expand[key], torch.Tensor) | 
					
						
						|  | and key not in visual_keys | 
					
						
						|  | ): | 
					
						
						|  | dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0) | 
					
						
						|  | return dict_to_expand | 
					
						
						|  |  | 
					
						
						|  | model_kwargs = _expand_dict_for_generation_visual(model_kwargs) | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | input_ids = input_ids.repeat_interleave(expand_size, dim=0) | 
					
						
						|  |  | 
					
						
						|  | model_kwargs = _expand_dict_for_generation(model_kwargs) | 
					
						
						|  |  | 
					
						
						|  | if is_encoder_decoder: | 
					
						
						|  | if model_kwargs.get("encoder_outputs") is None: | 
					
						
						|  | raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") | 
					
						
						|  | model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) | 
					
						
						|  |  | 
					
						
						|  | return input_ids, model_kwargs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | __all__ = [ | 
					
						
						|  | "Qwen3VLMoeVisionModel", | 
					
						
						|  | "Qwen3VLMoeForConditionalGeneration", | 
					
						
						|  | "Qwen3VLMoeModel", | 
					
						
						|  | "Qwen3VLMoePreTrainedModel", | 
					
						
						|  | "Qwen3VLMoeTextModel", | 
					
						
						|  | ] | 
					
						
						|  |  |