Qwen-Image-ControlNet-Union / transformer_qwenimage.py
wanghaofan's picture
upload codes and samples
3f0f0ad verified
# Copyright 2025 Qwen-Image Team, The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.attention import FeedForward
from diffusers.models.attention_dispatch import dispatch_attention_fn
from diffusers.models.attention_processor import Attention
from diffusers.models.cache_utils import CacheMixin
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
) -> torch.Tensor:
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
Args
timesteps (torch.Tensor):
a 1-D Tensor of N indices, one per batch element. These may be fractional.
embedding_dim (int):
the dimension of the output.
flip_sin_to_cos (bool):
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
downscale_freq_shift (float):
Controls the delta between frequencies between dimensions
scale (float):
Scaling factor applied to the embeddings.
max_period (int):
Controls the maximum frequency of the embeddings
Returns
torch.Tensor: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent).to(timesteps.dtype)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
def apply_rotary_emb_qwen(
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
use_real: bool = True,
use_real_unbind_dim: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
if use_real:
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
if use_real_unbind_dim == -1:
# Used for flux, cogvideox, hunyuan-dit
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
elif use_real_unbind_dim == -2:
# Used for Stable Audio, OmniGen, CogView4 and Cosmos
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
else:
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
else:
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.unsqueeze(1)
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
return x_out.type_as(x)
class QwenTimestepProjEmbeddings(nn.Module):
def __init__(self, embedding_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
def forward(self, timestep, hidden_states):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) # (N, D)
conditioning = timesteps_emb
return conditioning
class QwenEmbedRope(nn.Module):
def __init__(self, theta: int, axes_dim: List[int], scale_rope=False):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
pos_index = torch.arange(1024)
neg_index = torch.arange(1024).flip(0) * -1 - 1
self.pos_freqs = torch.cat(
[
self.rope_params(pos_index, self.axes_dim[0], self.theta),
self.rope_params(pos_index, self.axes_dim[1], self.theta),
self.rope_params(pos_index, self.axes_dim[2], self.theta),
],
dim=1,
)
self.neg_freqs = torch.cat(
[
self.rope_params(neg_index, self.axes_dim[0], self.theta),
self.rope_params(neg_index, self.axes_dim[1], self.theta),
self.rope_params(neg_index, self.axes_dim[2], self.theta),
],
dim=1,
)
self.rope_cache = {}
# 是否使用 scale rope
self.scale_rope = scale_rope
def rope_params(self, index, dim, theta=10000):
"""
Args:
index: [0, 1, 2, 3] 1D Tensor representing the position index of the token
"""
assert dim % 2 == 0
freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)))
freqs = torch.polar(torch.ones_like(freqs), freqs)
return freqs
def forward(self, video_fhw, txt_seq_lens, device):
"""
Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args:
txt_length: [bs] a list of 1 integers representing the length of the text
"""
if self.pos_freqs.device != device:
self.pos_freqs = self.pos_freqs.to(device)
self.neg_freqs = self.neg_freqs.to(device)
if isinstance(video_fhw, list):
video_fhw = video_fhw[0]
frame, height, width = video_fhw
rope_key = f"{frame}_{height}_{width}"
if rope_key not in self.rope_cache:
seq_lens = frame * height * width
freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1)
freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1)
freqs_frame = freqs_pos[0][:frame].view(frame, 1, 1, -1).expand(frame, height, width, -1)
if self.scale_rope:
freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0)
freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1)
freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0)
freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1)
else:
freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1)
freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1)
freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1)
self.rope_cache[rope_key] = freqs.clone().contiguous()
vid_freqs = self.rope_cache[rope_key]
if self.scale_rope:
max_vid_index = max(height // 2, width // 2)
else:
max_vid_index = max(height, width)
max_len = max(txt_seq_lens)
txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...]
return vid_freqs, txt_freqs
class QwenDoubleStreamAttnProcessor2_0:
"""
Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor
implements joint attention computation where text and image streams are processed together.
"""
_attention_backend = None
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor, # Image stream
encoder_hidden_states: torch.FloatTensor = None, # Text stream
encoder_hidden_states_mask: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
if encoder_hidden_states is None:
raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)")
seq_txt = encoder_hidden_states.shape[1]
# Compute QKV for image stream (sample projections)
img_query = attn.to_q(hidden_states)
img_key = attn.to_k(hidden_states)
img_value = attn.to_v(hidden_states)
# Compute QKV for text stream (context projections)
txt_query = attn.add_q_proj(encoder_hidden_states)
txt_key = attn.add_k_proj(encoder_hidden_states)
txt_value = attn.add_v_proj(encoder_hidden_states)
# Reshape for multi-head attention
img_query = img_query.unflatten(-1, (attn.heads, -1))
img_key = img_key.unflatten(-1, (attn.heads, -1))
img_value = img_value.unflatten(-1, (attn.heads, -1))
txt_query = txt_query.unflatten(-1, (attn.heads, -1))
txt_key = txt_key.unflatten(-1, (attn.heads, -1))
txt_value = txt_value.unflatten(-1, (attn.heads, -1))
# Apply QK normalization
if attn.norm_q is not None:
img_query = attn.norm_q(img_query)
if attn.norm_k is not None:
img_key = attn.norm_k(img_key)
if attn.norm_added_q is not None:
txt_query = attn.norm_added_q(txt_query)
if attn.norm_added_k is not None:
txt_key = attn.norm_added_k(txt_key)
# Apply RoPE
if image_rotary_emb is not None:
img_freqs, txt_freqs = image_rotary_emb
img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False)
img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False)
txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False)
txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False)
# Concatenate for joint attention
# Order: [text, image]
joint_query = torch.cat([txt_query, img_query], dim=1)
joint_key = torch.cat([txt_key, img_key], dim=1)
joint_value = torch.cat([txt_value, img_value], dim=1)
# Compute joint attention
joint_hidden_states = dispatch_attention_fn(
joint_query,
joint_key,
joint_value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
backend=self._attention_backend,
)
# Reshape back
joint_hidden_states = joint_hidden_states.flatten(2, 3)
joint_hidden_states = joint_hidden_states.to(joint_query.dtype)
# Split attention outputs back
txt_attn_output = joint_hidden_states[:, :seq_txt, :] # Text part
img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part
# Apply output projections
img_attn_output = attn.to_out[0](img_attn_output)
if len(attn.to_out) > 1:
img_attn_output = attn.to_out[1](img_attn_output) # dropout
txt_attn_output = attn.to_add_out(txt_attn_output)
return img_attn_output, txt_attn_output
@maybe_allow_in_graph
class QwenImageTransformerBlock(nn.Module):
def __init__(
self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
):
super().__init__()
self.dim = dim
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
# Image processing modules
self.img_mod = nn.Sequential(
nn.SiLU(),
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
)
self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None, # Enable cross attention for joint computation
added_kv_proj_dim=dim, # Enable added KV projections for text stream
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=False,
bias=True,
processor=QwenDoubleStreamAttnProcessor2_0(),
qk_norm=qk_norm,
eps=eps,
)
self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
# Text processing modules
self.txt_mod = nn.Sequential(
nn.SiLU(),
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
)
self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
# Text doesn't need separate attention - it's handled by img_attn joint computation
self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
def _modulate(self, x, mod_params):
"""Apply modulation to input tensor"""
shift, scale, gate = mod_params.chunk(3, dim=-1)
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_mask: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Get modulation parameters for both streams
img_mod_params = self.img_mod(temb) # [B, 6*dim]
txt_mod_params = self.txt_mod(temb) # [B, 6*dim]
# Split modulation parameters for norm1 and norm2
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
# Process image stream - norm1 + modulation
img_normed = self.img_norm1(hidden_states)
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
# Process text stream - norm1 + modulation
txt_normed = self.txt_norm1(encoder_hidden_states)
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
# Use QwenAttnProcessor2_0 for joint attention computation
# This directly implements the DoubleStreamLayerMegatron logic:
# 1. Computes QKV for both streams
# 2. Applies QK normalization and RoPE
# 3. Concatenates and runs joint attention
# 4. Splits results back to separate streams
joint_attention_kwargs = joint_attention_kwargs or {}
attn_output = self.attn(
hidden_states=img_modulated, # Image stream (will be processed as "sample")
encoder_hidden_states=txt_modulated, # Text stream (will be processed as "context")
encoder_hidden_states_mask=encoder_hidden_states_mask,
image_rotary_emb=image_rotary_emb,
**joint_attention_kwargs,
)
# QwenAttnProcessor2_0 returns (img_output, txt_output) when encoder_hidden_states is provided
img_attn_output, txt_attn_output = attn_output
# Apply attention gates and add residual (like in Megatron)
hidden_states = hidden_states + img_gate1 * img_attn_output
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
# Process image stream - norm2 + MLP
img_normed2 = self.img_norm2(hidden_states)
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
img_mlp_output = self.img_mlp(img_modulated2)
hidden_states = hidden_states + img_gate2 * img_mlp_output
# Process text stream - norm2 + MLP
txt_normed2 = self.txt_norm2(encoder_hidden_states)
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
txt_mlp_output = self.txt_mlp(txt_modulated2)
encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output
# Clip to prevent overflow for fp16
if encoder_hidden_states.dtype == torch.float16:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
if hidden_states.dtype == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
return encoder_hidden_states, hidden_states
class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
"""
The Transformer model introduced in Qwen.
Args:
patch_size (`int`, defaults to `2`):
Patch size to turn the input data into small patches.
in_channels (`int`, defaults to `64`):
The number of channels in the input.
out_channels (`int`, *optional*, defaults to `None`):
The number of channels in the output. If not specified, it defaults to `in_channels`.
num_layers (`int`, defaults to `60`):
The number of layers of dual stream DiT blocks to use.
attention_head_dim (`int`, defaults to `128`):
The number of dimensions to use for each attention head.
num_attention_heads (`int`, defaults to `24`):
The number of attention heads to use.
joint_attention_dim (`int`, defaults to `3584`):
The number of dimensions to use for the joint attention (embedding/channel dimension of
`encoder_hidden_states`).
guidance_embeds (`bool`, defaults to `False`):
Whether to use guidance embeddings for guidance-distilled variant of the model.
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
The dimensions to use for the rotary positional embeddings.
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["QwenImageTransformerBlock"]
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
@register_to_config
def __init__(
self,
patch_size: int = 2,
in_channels: int = 64,
out_channels: Optional[int] = 16,
num_layers: int = 60,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 3584,
guidance_embeds: bool = False, # TODO: this should probably be removed
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
):
super().__init__()
self.out_channels = out_channels or in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
self.img_in = nn.Linear(in_channels, self.inner_dim)
self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
QwenImageTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for _ in range(num_layers)
]
)
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
encoder_hidden_states_mask: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_shapes: Optional[List[Tuple[int, int, int]]] = None,
txt_seq_lens: Optional[List[int]] = None,
guidance: torch.Tensor = None, # TODO: this should probably be removed
attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_block_samples = None,
return_dict: bool = True,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
"""
The [`QwenTransformer2DModel`] forward method.
Args:
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
Input `hidden_states`.
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`):
Mask of the input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.img_in(hidden_states)
timestep = timestep.to(hidden_states.dtype)
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
encoder_hidden_states = self.txt_in(encoder_hidden_states)
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
temb = (
self.time_text_embed(timestep, hidden_states)
if guidance is None
else self.time_text_embed(timestep, guidance, hidden_states)
)
image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=hidden_states.device)
for index_block, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
block,
hidden_states,
encoder_hidden_states,
encoder_hidden_states_mask,
temb,
image_rotary_emb,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_kwargs=attention_kwargs,
)
# controlnet residual
if controlnet_block_samples is not None:
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
interval_control = int(np.ceil(interval_control))
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
# Use only the image part (hidden_states) from the dual-stream blocks
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)