Image-to-Image
Diffusers
English
JOY-Huang commited on
Commit
04f6fe0
·
1 Parent(s): c026882

initialize model card

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/outdomain_preview.png filter=lfs diff=lfs merge=lfs -text
37
+ assets/qualitative_real.png filter=lfs diff=lfs merge=lfs -text
38
+ assets/teaser_figure.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,153 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ library_name: diffusers
6
+ pipeline_tag: image-to-image
7
  ---
8
+
9
+ # InstantIR Model Card
10
+
11
+ <!-- > **InstantIR: Blind Image Restoration with Instant Generative Reference**<br>
12
+ > Jen-Yuan Huang<sup>1,2</sup>, Haofan Wang<sup>2</sup>, Qixun Wang<sup>2</sup>, Xu Bai<sup>2</sup>, Hao Ai<sup>2</sup>, Peng Xing<sup>2</sup>, Jen-Tse Huang<sup>3</sup> <br>
13
+ > <sup>1</sup>Peking University, <sup>2</sup>InstantX Team, <sup>3</sup>The Chinese University of Hong Kong -->
14
+
15
+ <a href='https://arxiv.org/abs/2410.06551'><img src='https://img.shields.io/badge/arXiv-b31b1b.svg'>
16
+ <a href='https://jy-joy.github.io/InstantIR'><img src='https://img.shields.io/badge/Website-informational'></a>
17
+ <a href='https://github.com/JY-Joy/InstantIR'><img src='https://img.shields.io/badge/Github-gray'></a>
18
+
19
+ > **InstantIR** is a novel single-image restoration model designed to resurrect your damaged images, delivering extrem-quality yet realistic details. You can further boost **InstantIR** performance with additional text prompts, even achieve customized editing!
20
+
21
+ <div align="center">
22
+ <img src='assets/teaser_figure.png'>
23
+ </div>
24
+
25
+
26
+ ## Usage
27
+
28
+ ### 1. Clone the github repo
29
+ ```sh
30
+ git clone https://github.com/JY-Joy/InstantIR.git
31
+ cd InstantIR
32
+ ```
33
+
34
+ ### 2. Download model weights
35
+ You can directly download InstantIR weights in this repository, or
36
+ you can download them using python script:
37
+
38
+ ```python
39
+ from huggingface_hub import hf_hub_download
40
+ hf_hub_download(repo_id="InstantX/InstantIR", filename="models/adapter.pt", local_dir="./models")
41
+ hf_hub_download(repo_id="InstantX/InstantIR", filename="models/aggregator.pt", local_dir="./models")
42
+ hf_hub_download(repo_id="InstantX/InstantIR", filename="models/previewer_lora_weights.bin", local_dir="./models")
43
+ ```
44
+
45
+ ### 3. Load InstantIR with 🧨 diffusers
46
+
47
+ ```python
48
+ # !pip install opencv-python transformers accelerate
49
+ import torch
50
+ from PIL import Image
51
+
52
+ import diffusers
53
+ from diffusers import DDPMScheduler, StableDiffusionXLPipeline
54
+ from diffusers.utils import load_image
55
+ from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler
56
+
57
+ from transformers import AutoImageProcessor, AutoModel
58
+
59
+ from module.ip_adapter.utils import load_ip_adapter_to_pipe, revise_state_dict, init_ip_adapter_in_unet
60
+ from module.ip_adapter.resampler import Resampler
61
+ from module.aggregator import Aggregator
62
+ from pipelines.sdxl_instantir import InstantIRPipeline
63
+
64
+ # prepare 'dinov2'
65
+ image_encoder = AutoModel.from_pretrained('facebook/dinov2-large')
66
+ image_processor = AutoImageProcessor.from_pretrained('facebook/dinov2-large')
67
+
68
+ # prepare models under ./checkpoints
69
+ dcp_adapter = f'./models/adapter.pt'
70
+ previewer_lora_path = f'./models'
71
+ instantir_path = f'./models/aggregator.pt'
72
+
73
+ # load SDXL
74
+ sdxl = StableDiffusionXLPipeline.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16)
75
+
76
+ # load adapter
77
+ image_proj_model = Resampler(
78
+ embedding_dim=image_encoder.config.hidden_size,
79
+ output_dim=sdxl.unet.config.cross_attention_dim,
80
+ )
81
+ init_ip_adapter_in_unet(
82
+ sdxl.unet,
83
+ image_proj_model,
84
+ dcp_adapter,
85
+ )
86
+
87
+ pipe = InstantIRPipeline(
88
+ sdxl.vae, sdxl.text_encoder, sdxl.text_encoder_2, sdxl.tokenizer, sdxl.tokenizer_2,
89
+ sdxl.unet, sdxl.scheduler, feature_extractor=image_processor, image_encoder=image_encoder,
90
+ )
91
+ pipe.cuda()
92
+
93
+ # load previewer lora
94
+ pipe.prepare_previewers(previewer_lora_path)
95
+ pipe.unet.to(dtype=torch.float16)
96
+ pipe.scheduler = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', subfolder="scheduler")
97
+ lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
98
+
99
+ # load aggregator weights
100
+ pretrained_state_dict = torch.load(instantir_path)
101
+ pipe.aggregator.load_state_dict(pretrained_state_dict)
102
+ pipe.aggregator.to(dtype=torch.float16)
103
+ ```
104
+
105
+ Then, you can restore your broken images with:
106
+
107
+ ```python
108
+ # load a broken image
109
+ image = Image.open('path/to/your-image').convert("RGB")
110
+
111
+ # InstantIR restoration
112
+ image = pipe(
113
+ prompt='',
114
+ image=image,
115
+ ip_adapter_image=[image],
116
+ negative_prompt='',
117
+ guidance_scale=7.0,
118
+ previewer_scheduler=lcm_scheduler,
119
+ return_dict=False,
120
+ )[0]
121
+ ```
122
+
123
+ For more details including text-guided enhancement/editing, please refer to our [GitHub repository](https://github.com/JY-Joy/InstantIR).
124
+
125
+ <!-- ## Usage Tips
126
+ 1. If you're not satisfied with the similarity, try to increase the weight of "IdentityNet Strength" and "Adapter Strength".
127
+ 2. If you feel that the saturation is too high, first decrease the Adapter strength. If it is still too high, then decrease the IdentityNet strength.
128
+ 3. If you find that text control is not as expected, decrease Adapter strength.
129
+ 4. If you find that realistic style is not good enough, go for our Github repo and use a more realistic base model. -->
130
+
131
+ ## Examples
132
+
133
+ <div align="center">
134
+ <img src='assets/qualitative_real.png'>
135
+ </div>
136
+
137
+ <div align="center">
138
+ <img src='assets/outdomain_preview.png'>
139
+ </div>
140
+
141
+ ## Disclaimer
142
+
143
+ This project is released under Apache License and aims to positively impact the field of AI-driven image generation. Users are granted the freedom to create images using this tool, but they are obligated to comply with local laws and utilize it responsibly. The developers will not assume any responsibility for potential misuse by users.
144
+
145
+ ## Citation
146
+ ```bibtex
147
+ @article{huang2024instantir,
148
+ title={InstantIR: Blind Image Restoration with Instant Generative Reference},
149
+ author={Huang, Jen-Yuan and Wang, Haofan and Wang, Qixun and Bai, Xu and Ai, Hao and Xing, Peng and Huang, Jen-Tse},
150
+ journal={arXiv preprint arXiv:2410.06551},
151
+ year={2024}
152
+ }
153
+ ```
assets/.DS_Store ADDED
Binary file (6.15 kB). View file
 
assets/outdomain_preview.png ADDED

Git LFS Details

  • SHA256: cc27a9c5c5ea41785bffd3c0142a83ca87881aeda3604c5052f5eccd5602f5fc
  • Pointer size: 132 Bytes
  • Size of remote file: 5.04 MB
assets/qualitative_real.png ADDED

Git LFS Details

  • SHA256: e8507a8a741a3d6a7a7e4fa2648cb248d88fc6c3102dea0d6f09d016f005a2b8
  • Pointer size: 132 Bytes
  • Size of remote file: 6.65 MB
assets/teaser_figure.png ADDED

Git LFS Details

  • SHA256: 2b0c926a7913faed56e3f5d24967416e283f6d0372c769e24f0f8939f1b50d3f
  • Pointer size: 132 Bytes
  • Size of remote file: 5.58 MB
adapter.pt → models/adapter.pt RENAMED
File without changes
aggregator.pt → models/aggregator.pt RENAMED
File without changes
previewer_lora_weights.bin → models/previewer_lora_weights.bin RENAMED
File without changes