|
--- |
|
license: apache-2.0 |
|
base_model: facebook/bart-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: test_sum_bart_base_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test_sum_bart_base_model |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7789 |
|
- Rouge1: 0.4137 |
|
- Rouge2: 0.3037 |
|
- Rougel: 0.3749 |
|
- Rougelsum: 0.3747 |
|
- Gen Len: 19.9959 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 0.9855 | 1.0 | 1764 | 0.8474 | 0.4122 | 0.303 | 0.3726 | 0.3726 | 19.9908 | |
|
| 0.8409 | 2.0 | 3528 | 0.7938 | 0.4138 | 0.3044 | 0.3752 | 0.3751 | 19.9946 | |
|
| 0.7872 | 3.0 | 5292 | 0.7776 | 0.4174 | 0.308 | 0.3783 | 0.3782 | 19.9928 | |
|
| 0.7485 | 4.0 | 7056 | 0.7789 | 0.4137 | 0.3037 | 0.3749 | 0.3747 | 19.9959 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|