infimm-hd / eva_vit_model.py
lllliuhhhhggg's picture
Update eva_vit_model.py
af3d978 verified
# --------------------------------------------------------
# Adapted from https://github.com/baaivision/EVA/blob/master/EVA-CLIP/rei/eva_clip/eva_vit_model.py
# --------------------------------------------------------
import math
import os
import tempfile
from dataclasses import dataclass
from functools import partial
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import yaml
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
if os.getenv("ENV_TYPE") == "deepspeed":
try:
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
except:
from torch.utils.checkpoint import checkpoint
else:
from torch.utils.checkpoint import checkpoint
from .utils import resize_eva_pos_embed
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
drop=0.0,
subln=False,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
use_ft_linear = False
if use_ft_linear:
self.fc1 = FTLinear(in_features, hidden_features)
else:
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
if use_ft_linear:
self.fc2 = FTLinear(hidden_features, out_features)
else:
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
# x = self.drop(x)
# commit this for the orignal BERT implement
x = self.ffn_ln(x)
x = self.fc2(x)
x = self.drop(x)
return x
class SwiGLU(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.SiLU,
drop=0.0,
norm_layer=nn.LayerNorm,
subln=False,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
use_ft_linear = False
if use_ft_linear:
self.w1 = FTLinear(in_features, hidden_features)
self.w2 = FTLinear(in_features, hidden_features)
else:
self.w1 = nn.Linear(in_features, hidden_features)
self.w2 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
if use_ft_linear:
self.w3 = FTLinear(hidden_features, out_features)
else:
self.w3 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x1 = self.w1(x)
x2 = self.w2(x)
hidden = self.act(x1) * x2
x = self.ffn_ln(hidden)
x = self.w3(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
window_size=None,
attn_head_dim=None,
xattn=False,
rope=None,
subln=False,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim**-0.5
self.use_ft_flash_attention = False
self.subln = subln
if self.subln:
self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
else:
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
if window_size:
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1
) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0
).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2,
dtype=relative_coords.dtype,
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
self.attn_drop = nn.Dropout(attn_drop)
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
# self.proj = nn.Linear(all_head_dim, all_head_dim)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.xattn = xattn
self.xattn_drop = attn_drop
if self.use_ft_flash_attention:
assert FTFlashAttention is not None
self.ft_flash_attn = FTFlashAttention()
self.rope = rope
def forward(self, x, rel_pos_bias=None, attn_mask=None):
B, N, C = x.shape
if self.subln:
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
q = q.reshape(B, N, self.num_heads, -1).permute(
0, 2, 1, 3
) # B, num_heads, N, C
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
else:
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(
self.q_bias,
torch.zeros_like(self.v_bias, requires_grad=False),
self.v_bias,
)
)
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(
2, 0, 3, 1, 4
) # 3, B, num_heads, N, C
q, k, v = qkv[0], qkv[1], qkv[2]
if self.rope:
# slightly fast impl
q_t = q[:, :, 1:, :]
ro_q_t = self.rope(q_t)
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
k_t = k[:, :, 1:, :]
ro_k_t = self.rope(k_t)
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
if self.use_ft_flash_attention:
q = q.permute(0, 2, 1, 3).contiguous()
q = q.view(
q.shape[0], q.shape[1], -1
) # B, num_heads, N, C -> B, N, num_heads, C
k = k.permute(0, 2, 1, 3).contiguous()
k = k.view(k.shape[0], k.shape[1], -1)
v = v.permute(0, 2, 1, 3).contiguous()
v = v.view(v.shape[0], v.shape[1], -1)
x = self.ft_flash_attn(
[q, k, v],
self.num_heads,
attn_mask=None,
causal=False,
attention_dropout=self.xattn_drop if self.training else 0.0,
softmax_scale=self.scale,
use_rmpad_attn=False,
)
x = self.inner_attn_ln(x)
x = self.proj(x)
x = self.proj_drop(x)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if self.relative_position_bias_table is not None:
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1,
-1,
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1
).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
if rel_pos_bias is not None:
attn = attn + rel_pos_bias.type_as(attn)
if attn_mask is not None:
attn_mask = attn_mask.bool()
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.inner_attn_ln(x)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
init_values=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
window_size=None,
attn_head_dim=None,
xattn=False,
rope=None,
postnorm=False,
subln=False,
naiveswiglu=False,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
window_size=window_size,
attn_head_dim=attn_head_dim,
xattn=xattn,
rope=rope,
subln=subln,
norm_layer=norm_layer,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
if naiveswiglu:
self.mlp = SwiGLU(
in_features=dim,
hidden_features=mlp_hidden_dim,
subln=subln,
norm_layer=norm_layer,
)
else:
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
subln=subln,
drop=drop,
)
if init_values is not None and init_values > 0:
self.gamma_1 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True
)
self.gamma_2 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True
)
else:
self.gamma_1, self.gamma_2 = None, None
self.postnorm = postnorm
def forward(self, x, rel_pos_bias=None, attn_mask=None):
if self.gamma_1 is None:
if self.postnorm:
x = x + self.drop_path(
self.norm1(
self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)
)
)
x = x + self.drop_path(self.norm2(self.mlp(x)))
else:
x = x + self.drop_path(
self.attn(
self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask
)
)
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
if self.postnorm:
x = x + self.drop_path(
self.gamma_1
* self.norm1(
self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)
)
)
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
else:
x = x + self.drop_path(
self.gamma_1
* self.attn(
self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask
)
)
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
def forward(self, x, **kwargs):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], (
f"Input image size ({H}*{W}) doesn't match model"
f" ({self.img_size[0]}*{self.img_size[1]})."
)
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class RelativePositionBias(nn.Module):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1
) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0
).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
def forward(self):
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1,
-1,
) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class EVAVisionTransformer(nn.Module):
"""Vision Transformer with support for patch or hybrid CNN input stage"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
init_values=None,
patch_dropout=0.0,
use_abs_pos_emb=True,
use_rel_pos_bias=False,
use_shared_rel_pos_bias=False,
rope=False,
use_mean_pooling=True,
init_scale=0.001,
grad_checkpointing=False,
xattn=False,
postnorm=False,
pt_hw_seq_len=16,
intp_freq=False,
naiveswiglu=False,
subln=False,
):
super().__init__()
self.image_size = img_size
self.num_classes = num_classes
self.num_features = (
self.embed_dim
) = embed_dim # num_features for consistency with other models
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
if use_abs_pos_emb:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
else:
self.pos_embed = None
self.pos_drop = nn.Dropout(p=drop_rate)
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(
window_size=self.patch_embed.patch_shape, num_heads=num_heads
)
else:
self.rel_pos_bias = None
if rope:
half_head_dim = embed_dim // num_heads // 2
hw_seq_len = img_size // patch_size
self.rope = VisionRotaryEmbeddingFast(
dim=half_head_dim,
pt_seq_len=pt_hw_seq_len,
ft_seq_len=hw_seq_len if intp_freq else None,
# patch_dropout=patch_dropout
)
else:
self.rope = None
self.naiveswiglu = naiveswiglu
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.use_rel_pos_bias = use_rel_pos_bias
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
init_values=init_values,
window_size=(
self.patch_embed.patch_shape if use_rel_pos_bias else None
),
xattn=xattn,
rope=self.rope,
postnorm=postnorm,
subln=subln,
naiveswiglu=naiveswiglu,
)
for i in range(depth)
]
)
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
self.head = (
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
# trunc_normal_(self.mask_token, std=.02)
self.apply(self._init_weights)
self.fix_init_weight()
if isinstance(self.head, nn.Linear):
trunc_normal_(self.head.weight, std=0.02)
self.head.weight.data.mul_(init_scale)
self.head.bias.data.mul_(init_scale)
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
self.patch_dropout = (
PatchDropout(patch_dropout) if patch_dropout > 0.0 else nn.Identity()
)
self.grad_checkpointing = grad_checkpointing
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
if self.naiveswiglu:
rescale(layer.mlp.w3.weight.data, layer_id + 1)
else:
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def get_cast_dtype(self) -> torch.dtype:
return self.blocks[0].mlp.fc2.weight.dtype
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
assert (
unlocked_groups == 0
), "partial locking not currently supported for this model"
for param in self.parameters():
param.requires_grad = False
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token"}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=""):
self.num_classes = num_classes
self.head = (
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
def forward_features(self, x, return_all_features=False):
x = self.patch_embed(x)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(
batch_size, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
if os.getenv("RoPE") == "1":
if self.training and not isinstance(self.patch_dropout, nn.Identity):
x, patch_indices_keep = self.patch_dropout(x)
self.rope.forward = partial(
self.rope.forward, patch_indices_keep=patch_indices_keep
)
else:
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
x = self.patch_dropout(x)
else:
x = self.patch_dropout(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
for blk in self.blocks:
if self.grad_checkpointing:
x = checkpoint(blk, x, (rel_pos_bias,))
else:
x = blk(x, rel_pos_bias=rel_pos_bias)
if not return_all_features:
x = self.norm(x)
if self.fc_norm is not None:
return self.fc_norm(x.mean(1))
else:
return x[:, 0]
return x
def forward(self, x, return_all_features=False):
if return_all_features:
return self.forward_features(x, return_all_features)
x = self.forward_features(x)
x = self.head(x)
return x
@dataclass
class CLIPVisionCfg:
layers: Union[Tuple[int, int, int, int], int] = 12
width: int = 768
head_width: int = 64
mlp_ratio: float = 4.0
patch_size: int = 16
image_size: Union[Tuple[int, int], int] = 224
ls_init_value: Optional[float] = None # layer scale initial value
patch_dropout: float = 0.0 # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
drop_path_rate: Optional[float] = None # drop path rate
timm_model_name: str = (
None # a valid model name overrides layers, width, patch_size
)
timm_model_pretrained: bool = (
False # use (imagenet) pretrained weights for named model
)
timm_pool: str = ( # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
"avg"
)
timm_proj: str = ( # linear projection for timm model output ('linear', 'mlp', '')
"linear"
)
timm_proj_bias: bool = False # enable bias final projection
eva_model_name: str = (
None # a valid eva model name overrides layers, width, patch_size
)
qkv_bias: bool = True
fusedLN: bool = False
embed_dim: int = 1024
xattn: bool = False
postnorm: bool = False
rope: bool = False
pt_hw_seq_len: int = 16 # 224/14
intp_freq: bool = False
naiveswiglu: bool = False
subln: bool = False
def load_state_dict(
checkpoint_path: str,
map_location: str = "cpu",
model_key: str = "model|module|state_dict",
is_openai: bool = False,
skip_list: list = [],
):
if is_openai:
model = torch.jit.load(checkpoint_path, map_location="cpu").eval()
state_dict = model.state_dict()
for key in ["input_resolution", "context_length", "vocab_size"]:
state_dict.pop(key, None)
else:
checkpoint = torch.load(checkpoint_path, map_location=map_location)
for mk in model_key.split("|"):
if isinstance(checkpoint, dict) and mk in checkpoint:
state_dict = checkpoint[mk]
break
else:
state_dict = checkpoint
if next(iter(state_dict.items()))[0].startswith("module"):
state_dict = {k[7:]: v for k, v in state_dict.items()}
for k in skip_list:
if k in list(state_dict.keys()):
print(f"Removing key {k} from pretrained checkpoint")
del state_dict[k]
if os.getenv("RoPE") == "1":
for k in list(state_dict.keys()):
if "freqs_cos" in k or "freqs_sin" in k:
del state_dict[k]
return state_dict
def load_clip_visual_state_dict(
checkpoint_path: str,
map_location: str = "cpu",
is_openai: bool = False,
skip_list: list = [],
):
state_dict = load_state_dict(
checkpoint_path,
map_location=map_location,
is_openai=is_openai,
skip_list=skip_list,
)
for k in list(state_dict.keys()):
if not k.startswith("visual."):
del state_dict[k]
for k in list(state_dict.keys()):
if k.startswith("visual."):
new_k = k[7:]
state_dict[new_k] = state_dict[k]
del state_dict[k]
return state_dict