Upload 5 files
Browse files- data/CDDataset.py +168 -0
- data/__init__.py +68 -0
- data/colormap.py +3 -0
- data/generate_list.py +12 -0
- data/util.py +8 -0
data/CDDataset.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
CD Dataset
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import numpy as np
|
| 7 |
+
from torch.utils import data
|
| 8 |
+
import data.util as Util
|
| 9 |
+
from torch.utils.data import Dataset
|
| 10 |
+
import torchvision
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
totensor = torchvision.transforms.ToTensor()
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
CD Dataset
|
| 17 |
+
├─image
|
| 18 |
+
├─image_post
|
| 19 |
+
├─label
|
| 20 |
+
└─list
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
IMG_FOLDER_NAME = 'A'
|
| 24 |
+
IMG_POST_FOLDER_NAME = 'B'
|
| 25 |
+
LABEL_FOLDER_NAME = 'label'
|
| 26 |
+
LABEL1_FOLDER_NAME = 'label1'
|
| 27 |
+
LABEL2_FOLDER_NAME = 'label2'
|
| 28 |
+
LIST_FOLDER_NAME = 'list'
|
| 29 |
+
|
| 30 |
+
label_suffix = ".png"
|
| 31 |
+
|
| 32 |
+
#list内存放image_name 构建读取图片名字函数
|
| 33 |
+
def load_img_name_list(dataset_path):
|
| 34 |
+
img_name_list = np.loadtxt(dataset_path, dtype=np.str_)
|
| 35 |
+
if img_name_list.ndim == 2:
|
| 36 |
+
return img_name_list[:, 0]
|
| 37 |
+
return img_name_list
|
| 38 |
+
|
| 39 |
+
#获取各个文件夹的路径
|
| 40 |
+
def get_img_path(root_dir, img_name):
|
| 41 |
+
return os.path.join(root_dir, IMG_FOLDER_NAME, img_name)
|
| 42 |
+
|
| 43 |
+
def get_img_post_path(root_dir, img_name):
|
| 44 |
+
return os.path.join(root_dir, IMG_POST_FOLDER_NAME, img_name)
|
| 45 |
+
|
| 46 |
+
def get_label_path(root_dir, img_name):
|
| 47 |
+
return os.path.join(root_dir, LABEL_FOLDER_NAME, img_name)
|
| 48 |
+
|
| 49 |
+
def get_label1_path(root_dir, img_name):
|
| 50 |
+
return os.path.join(root_dir, LABEL1_FOLDER_NAME, img_name)
|
| 51 |
+
|
| 52 |
+
def get_label2_path(root_dir, img_name):
|
| 53 |
+
return os.path.join(root_dir, LABEL2_FOLDER_NAME, img_name)
|
| 54 |
+
|
| 55 |
+
class CDDataset(Dataset):
|
| 56 |
+
def __init__(self, root_dir, resolution=256, split='train', data_len=-1, label_transform=None):
|
| 57 |
+
|
| 58 |
+
self.root_dir = root_dir
|
| 59 |
+
self.resolution = resolution
|
| 60 |
+
self.data_len = data_len
|
| 61 |
+
self.split = split #train / val / test
|
| 62 |
+
self.label_transform = label_transform
|
| 63 |
+
|
| 64 |
+
self.list_path = os.path.join(self.root_dir, LIST_FOLDER_NAME, self.split + '.txt')
|
| 65 |
+
|
| 66 |
+
self.img_name_list = load_img_name_list(self.list_path)
|
| 67 |
+
|
| 68 |
+
self.dataset_len = len(self.img_name_list)
|
| 69 |
+
|
| 70 |
+
if self.data_len <= 0:
|
| 71 |
+
self.data_len = self.dataset_len
|
| 72 |
+
else:
|
| 73 |
+
self.data_len = min(self.dataset_len, self.data_len)
|
| 74 |
+
|
| 75 |
+
def __len__(self):
|
| 76 |
+
return self.data_len
|
| 77 |
+
|
| 78 |
+
def __getitem__(self, index):
|
| 79 |
+
A_path = get_img_path(self.root_dir, self.img_name_list[index % self.data_len])
|
| 80 |
+
B_path = get_img_post_path(self.root_dir, self.img_name_list[index % self.data_len])
|
| 81 |
+
|
| 82 |
+
img_A = Image.open(A_path).convert('RGB')
|
| 83 |
+
img_B = Image.open(B_path).convert('RGB')
|
| 84 |
+
|
| 85 |
+
L_path = get_label_path(self.root_dir, self.img_name_list[index % self.data_len])
|
| 86 |
+
img_label = Image.open(L_path).convert("RGB")
|
| 87 |
+
|
| 88 |
+
img_A = Util.transform_augment_cd(img_A, min_max=(-1, 1))
|
| 89 |
+
img_B = Util.transform_augment_cd(img_B, min_max=(-1, 1))
|
| 90 |
+
img_label = Util.transform_augment_cd(img_label, min_max=(0, 1))
|
| 91 |
+
if img_label.dim() > 2:
|
| 92 |
+
img_label = img_label[0]
|
| 93 |
+
|
| 94 |
+
return {'A':img_A, 'B':img_B, 'L':img_label, 'Index':index}
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class SCDDataset(Dataset):
|
| 99 |
+
def __init__(self, root_dir, resolution=512, split='train', data_len=-1, label_transform=None):
|
| 100 |
+
|
| 101 |
+
self.root_dir = root_dir
|
| 102 |
+
self.resolution = resolution
|
| 103 |
+
self.data_len = data_len
|
| 104 |
+
self.split = split #train / val / test
|
| 105 |
+
self.label_transform = label_transform
|
| 106 |
+
|
| 107 |
+
self.list_path = os.path.join(self.root_dir, LIST_FOLDER_NAME, self.split + '.txt')
|
| 108 |
+
|
| 109 |
+
self.img_name_list = load_img_name_list(self.list_path)
|
| 110 |
+
|
| 111 |
+
self.dataset_len = len(self.img_name_list)
|
| 112 |
+
|
| 113 |
+
if self.data_len <= 0:
|
| 114 |
+
self.data_len = self.dataset_len
|
| 115 |
+
else:
|
| 116 |
+
self.data_len = min(self.dataset_len, self.data_len)
|
| 117 |
+
|
| 118 |
+
def __len__(self):
|
| 119 |
+
return self.data_len
|
| 120 |
+
|
| 121 |
+
def __getitem__(self, index):
|
| 122 |
+
A_path = get_img_path(self.root_dir, self.img_name_list[index % self.data_len])
|
| 123 |
+
B_path = get_img_post_path(self.root_dir, self.img_name_list[index % self.data_len])
|
| 124 |
+
name = A_path.split('\\')[-1].split('.')[0]
|
| 125 |
+
img_A = Image.open(A_path).convert('RGB')
|
| 126 |
+
img_B = Image.open(B_path).convert('RGB')
|
| 127 |
+
|
| 128 |
+
L_path = get_label_path(self.root_dir, self.img_name_list[index % self.data_len])
|
| 129 |
+
L1_path = get_label1_path(self.root_dir, self.img_name_list[index % self.data_len])
|
| 130 |
+
L2_path = get_label2_path(self.root_dir, self.img_name_list[index % self.data_len])
|
| 131 |
+
img_label = np.array(Image.open(L_path), dtype=np.uint8)
|
| 132 |
+
img_label1 = np.array(Image.open(L1_path), dtype=np.uint8)
|
| 133 |
+
img_label2 = np.array(Image.open(L2_path), dtype=np.uint8)
|
| 134 |
+
|
| 135 |
+
img_A = Util.transform_augment_cd(img_A, min_max=(-1, 1))
|
| 136 |
+
img_B = Util.transform_augment_cd(img_B, min_max=(-1, 1))
|
| 137 |
+
img_label = torch.from_numpy(img_label)
|
| 138 |
+
img_label1 = torch.from_numpy(img_label1)
|
| 139 |
+
# add cls label on label1
|
| 140 |
+
cls_category1 = torch.unique(img_label1)
|
| 141 |
+
cls_label1 = torch.zeros(7, dtype = int)
|
| 142 |
+
for index in cls_category1:
|
| 143 |
+
cls_label1[int(index)] = 1
|
| 144 |
+
|
| 145 |
+
img_label2 = torch.from_numpy(img_label2)
|
| 146 |
+
# add cls label on label2
|
| 147 |
+
cls_category2 = torch.unique(img_label2)
|
| 148 |
+
cls_label2 = torch.zeros(7, dtype=int)
|
| 149 |
+
for index in cls_category2:
|
| 150 |
+
cls_label2[int(index)] = 1
|
| 151 |
+
|
| 152 |
+
if img_label.dim() > 2:
|
| 153 |
+
img_label = img_label[0]
|
| 154 |
+
img_label1 = img_label1[0]
|
| 155 |
+
img_label2 = img_label2[0]
|
| 156 |
+
|
| 157 |
+
return {'A':img_A, 'B':img_B, 'L':img_label, 'L1':img_label1, 'L2':img_label2,
|
| 158 |
+
'Index':index, 'name':name, 'cls1':cls_label1, 'cls2':cls_label2}
|
| 159 |
+
|
| 160 |
+
if __name__ == '__main__':
|
| 161 |
+
root_dir = r'E:\cddataset\mmcd\Second_my'
|
| 162 |
+
cddata = SCDDataset(root_dir=root_dir)
|
| 163 |
+
list_path = os.path.join(root_dir, 'list', 'val', '.txt')
|
| 164 |
+
for i in range(593):
|
| 165 |
+
cls_labe1 = cddata.__getitem__(i)['cls1']
|
| 166 |
+
print(cls_labe1)
|
| 167 |
+
cls_labe2 = cddata.__getitem__(i)['cls2']
|
| 168 |
+
print(cls_labe2)
|
data/__init__.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import logging
|
| 3 |
+
import core.logger as Logger
|
| 4 |
+
import data as Data
|
| 5 |
+
|
| 6 |
+
#Create chaneg detection dataset
|
| 7 |
+
import logging
|
| 8 |
+
import torch.utils.data
|
| 9 |
+
|
| 10 |
+
def create_cd_dataloader(dataset, dataset_opt, phase):
|
| 11 |
+
if phase == 'train' or 'val' or 'test':
|
| 12 |
+
return torch.utils.data.DataLoader(
|
| 13 |
+
dataset,
|
| 14 |
+
batch_size=dataset_opt['batch_size'],
|
| 15 |
+
shuffle=dataset_opt['use_shuffle'],
|
| 16 |
+
num_workers=dataset_opt['num_workers'],
|
| 17 |
+
pin_memory=True)
|
| 18 |
+
else:
|
| 19 |
+
raise NotImplementedError(
|
| 20 |
+
'Dataloader [{:s}] is not found'.format(phase)
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
def create_cd_dataset(dataset_opt, phase):
|
| 24 |
+
from data.CDDataset import CDDataset
|
| 25 |
+
print(dataset_opt["datasetroot"])
|
| 26 |
+
dataset = CDDataset(root_dir=dataset_opt["datasetroot"],
|
| 27 |
+
resolution=dataset_opt["resolution"],
|
| 28 |
+
split=phase,
|
| 29 |
+
data_len=dataset_opt["data_len"]
|
| 30 |
+
)
|
| 31 |
+
logger = logging.getLogger('base')
|
| 32 |
+
logger.info('Dataset [{:s} - {:s} - {:s}] is created'.format(dataset.__class__.__name__,
|
| 33 |
+
dataset_opt['name'],
|
| 34 |
+
phase))
|
| 35 |
+
return dataset
|
| 36 |
+
|
| 37 |
+
def create_scd_dataset(dataset_opt, phase):
|
| 38 |
+
from data.CDDataset import SCDDataset
|
| 39 |
+
print(dataset_opt["datasetroot"])
|
| 40 |
+
dataset = SCDDataset(root_dir=dataset_opt["datasetroot"],
|
| 41 |
+
resolution=dataset_opt["resolution"],
|
| 42 |
+
split=phase,
|
| 43 |
+
data_len=dataset_opt["data_len"]
|
| 44 |
+
)
|
| 45 |
+
logger = logging.getLogger('base')
|
| 46 |
+
logger.info('Dataset [{:s} - {:s} - {:s}] is created'.format(dataset.__class__.__name__,
|
| 47 |
+
dataset_opt['name'],
|
| 48 |
+
phase))
|
| 49 |
+
return dataset
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
if __name__ == "__main__":
|
| 53 |
+
parser = argparse.ArgumentParser()
|
| 54 |
+
parser.add_argument('-c', '--config', type=str, default='../config/levir.json')
|
| 55 |
+
parser.add_argument('-p', '--phase', type=str, choices=['train', 'test'], default='train')
|
| 56 |
+
parser.add_argument('-gpu', '--gpu_ids', type=str, default=None)
|
| 57 |
+
|
| 58 |
+
args = parser.parse_args()
|
| 59 |
+
opt = Logger.parse(args)
|
| 60 |
+
opt = Logger.dict_to_nonedict(opt)
|
| 61 |
+
print(opt)
|
| 62 |
+
|
| 63 |
+
for phase, dataset_opt in opt['datasets'].items():
|
| 64 |
+
if phase == 'train' and args.phase != 'test':
|
| 65 |
+
print("Creating [train] change-detection dataloader.")
|
| 66 |
+
train_set = Data.create_cd_dataset(dataset_opt, phase)
|
| 67 |
+
train_loader = Data.create_cd_dataloader(train_set, dataset_opt, phase)
|
| 68 |
+
|
data/colormap.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
second_colormap = [[255, 255, 255], [0, 0, 255], [128, 128, 128], [0, 128, 0], [0, 255, 0], [128, 0, 0], [255, 0, 0]]
|
data/generate_list.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
def genreate_list(root, split):
|
| 4 |
+
|
| 5 |
+
list_path = os.path.join(root, split+'.txt')
|
| 6 |
+
with open(list_path, 'w') as f:
|
| 7 |
+
for img_name in os.listdir(os.path.join(root)):
|
| 8 |
+
f.write(img_name + '\n')
|
| 9 |
+
|
| 10 |
+
if __name__ == "__main__":
|
| 11 |
+
root = r'E:\cddataset\mmcd\Second_my\val\im1'
|
| 12 |
+
genreate_list(root, 'val')
|
data/util.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torchvision
|
| 2 |
+
|
| 3 |
+
totensor = torchvision.transforms.ToTensor()
|
| 4 |
+
|
| 5 |
+
def transform_augment_cd(img, min_max=(0, 1)):
|
| 6 |
+
img = totensor(img)
|
| 7 |
+
ret_img = img * (min_max[1] - min_max[0]) + min_max[0]
|
| 8 |
+
return ret_img
|