Upload 3 files
Browse files- misc/caculate_metric.py +112 -0
- misc/metric_tools.py +230 -0
- misc/torchutils.py +83 -0
misc/caculate_metric.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
def calcuate_confusion_matrix(num_class:int, gt:torch.tensor, pred:torch.tensor):
|
| 5 |
+
gt_vector = gt.flatten()
|
| 6 |
+
pred_vector = pred.flatten()
|
| 7 |
+
mask = (gt_vector >= 0) & (gt_vector < num_class)
|
| 8 |
+
cm = torch.bincount(num_class * gt_vector[mask].to(dtype=int) + pred_vector[mask], minlength=num_class ** 2).reshape(num_class, num_class)
|
| 9 |
+
return cm
|
| 10 |
+
|
| 11 |
+
class segmengtion_metric(object):
|
| 12 |
+
def __init__(self, num_class:int, device:str):
|
| 13 |
+
self.num_class = num_class
|
| 14 |
+
self.device = device
|
| 15 |
+
self.confusion_matrix = torch.zeros((self.num_class, self.num_class)).to(self.device)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def clear(self):
|
| 19 |
+
self.confusion_matrix = torch.zeros((self.num_class, self.num_class)).to(self.device)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def update_confusion_matrix(self, gt, pred):
|
| 23 |
+
cm = calcuate_confusion_matrix(self.num_class, gt, pred)
|
| 24 |
+
self.confusion_matrix += cm
|
| 25 |
+
|
| 26 |
+
def get_matrix_per_batch(self, gt, pred):
|
| 27 |
+
confusion_matrix = calcuate_confusion_matrix(self.num_class, gt, pred)
|
| 28 |
+
|
| 29 |
+
tp = torch.diag(confusion_matrix)
|
| 30 |
+
|
| 31 |
+
sum_a1 = torch.sum(confusion_matrix, dim=1)
|
| 32 |
+
|
| 33 |
+
sum_a0 = torch.sum(confusion_matrix, dim=0)
|
| 34 |
+
|
| 35 |
+
acc = tp.sum() / (confusion_matrix.sum() + torch.finfo(type=torch.float32).eps)
|
| 36 |
+
recall = tp / (sum_a1 + torch.finfo(type=torch.float32).eps)
|
| 37 |
+
precision = tp / (sum_a0 + torch.finfo(type=torch.float32).eps)
|
| 38 |
+
f1 = (2 * recall * precision) / (recall + precision + torch.finfo(type=torch.float32).eps)
|
| 39 |
+
iou = tp / (sum_a1 + sum_a0 - tp + torch.finfo(type=torch.float32).eps)
|
| 40 |
+
|
| 41 |
+
cls_precision = dict(zip(['pre_class[{}]'.format(i) for i in range(self.num_class)], precision))
|
| 42 |
+
cls_recall = dict(zip(['rec_class[{}]'.format(i) for i in range(self.num_class)], recall))
|
| 43 |
+
cls_f1 = dict(zip(['f1_class[{}]'.format(i) for i in range(self.num_class)], f1))
|
| 44 |
+
cls_iou = dict(zip(['iou_class[{}]'.format(i) for i in range(self.num_class)], iou))
|
| 45 |
+
|
| 46 |
+
mean_precision = precision[precision != 0].mean()
|
| 47 |
+
mean_recall = recall[recall != 0].mean()
|
| 48 |
+
mean_iou = iou[iou != 0].mean()
|
| 49 |
+
mean_f1 = f1[f1 != 0].mean()
|
| 50 |
+
|
| 51 |
+
score_dict_batch = {'acc': acc, 'mean_pre': mean_precision, 'mean_rec': mean_recall, 'mIoU': mean_iou, 'mF1': mean_f1}
|
| 52 |
+
score_dict_batch.update(cls_precision)
|
| 53 |
+
score_dict_batch.update(cls_recall)
|
| 54 |
+
score_dict_batch.update(cls_iou)
|
| 55 |
+
score_dict_batch.update(cls_f1)
|
| 56 |
+
|
| 57 |
+
return score_dict_batch
|
| 58 |
+
|
| 59 |
+
def get_metric_dict_per_epoch(self):
|
| 60 |
+
|
| 61 |
+
tp = torch.diag(self.confusion_matrix)
|
| 62 |
+
|
| 63 |
+
sum_a1 = torch.sum(self.confusion_matrix, dim=1)
|
| 64 |
+
|
| 65 |
+
sum_a0 = torch.sum(self.confusion_matrix, dim=0)
|
| 66 |
+
|
| 67 |
+
acc = tp.sum() / (self.confusion_matrix.sum() + torch.finfo(type=torch.float32).eps)
|
| 68 |
+
|
| 69 |
+
recall = tp / (sum_a1 + torch.finfo(type=torch.float32).eps)
|
| 70 |
+
|
| 71 |
+
precision = tp / (sum_a0 + torch.finfo(type=torch.float32).eps)
|
| 72 |
+
|
| 73 |
+
f1 = (2 * recall * precision) / (recall + precision + torch.finfo(type=torch.float32).eps)
|
| 74 |
+
|
| 75 |
+
iou = tp / (sum_a1 + sum_a0 - tp + torch.finfo(type=torch.float32).eps)
|
| 76 |
+
|
| 77 |
+
cls_precision = dict(zip(['Precision_Class[{}]'.format(i) for i in range(self.num_class)], precision))
|
| 78 |
+
cls_recall = dict(zip(['Recall_Class[{}]'.format(i) for i in range(self.num_class)], recall))
|
| 79 |
+
cls_iou = dict(zip(['IoU_Class[{}]'.format(i) for i in range(self.num_class)], iou))
|
| 80 |
+
cls_f1 = dict(zip(['F1_Class[{}]'.format(i) for i in range(self.num_class)], f1))
|
| 81 |
+
|
| 82 |
+
mean_precision = precision.mean()
|
| 83 |
+
mean_recall = recall.mean()
|
| 84 |
+
mean_iou = iou.mean()
|
| 85 |
+
mean_f1 = f1.mean()
|
| 86 |
+
score_dict_epoch = {'Accuracy': acc, 'mean_Precision': mean_precision, 'mean_Recall': mean_recall,
|
| 87 |
+
'mIoU': mean_iou, 'mF1': mean_f1}
|
| 88 |
+
|
| 89 |
+
score_dict_epoch.update(cls_precision)
|
| 90 |
+
score_dict_epoch.update(cls_recall)
|
| 91 |
+
score_dict_epoch.update(cls_iou)
|
| 92 |
+
score_dict_epoch.update(cls_f1)
|
| 93 |
+
return score_dict_epoch
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
if __name__=="__main__":
|
| 101 |
+
gt_label = torch.tensor([[0, 1, 2, 3, 1],
|
| 102 |
+
[1, 2, 2, 3, 4]])
|
| 103 |
+
|
| 104 |
+
pre_label = torch.tensor([[0, 1, 2, 3, 1],
|
| 105 |
+
[5, 1, 2, 1, 4]])
|
| 106 |
+
|
| 107 |
+
num_class = 6
|
| 108 |
+
metric = segmengtion_metric(6, 'cuda:0')
|
| 109 |
+
res = metric.get_matrix_per_batch(gt_label, pre_label)
|
| 110 |
+
res1 = metric.get_metric_dict_per_epoch()
|
| 111 |
+
print(res)
|
| 112 |
+
print(res1)
|
misc/metric_tools.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from scipy import stats
|
| 3 |
+
import math
|
| 4 |
+
|
| 5 |
+
class AverageMeter(object):
|
| 6 |
+
|
| 7 |
+
def __init__(self):
|
| 8 |
+
self.initialized = False
|
| 9 |
+
self.val = None
|
| 10 |
+
self.avg = None
|
| 11 |
+
self.sum = None
|
| 12 |
+
self.count = None
|
| 13 |
+
|
| 14 |
+
def initialize(self, val, weight):
|
| 15 |
+
self.val = val
|
| 16 |
+
self.avg = val
|
| 17 |
+
self.sum = val * weight
|
| 18 |
+
self.count = weight
|
| 19 |
+
self.initialized = True
|
| 20 |
+
|
| 21 |
+
def update(self, val, weight=1):
|
| 22 |
+
if not self.initialized:
|
| 23 |
+
self.initialize(val, weight)
|
| 24 |
+
else:
|
| 25 |
+
self.add(val, weight)
|
| 26 |
+
|
| 27 |
+
def add(self, val, weight):
|
| 28 |
+
self.val = val
|
| 29 |
+
self.sum += val * weight
|
| 30 |
+
self.count += weight
|
| 31 |
+
self.avg = self.sum / self.count
|
| 32 |
+
|
| 33 |
+
def value(self):
|
| 34 |
+
return self.val
|
| 35 |
+
|
| 36 |
+
def average(self):
|
| 37 |
+
return self.avg
|
| 38 |
+
|
| 39 |
+
def get_scores(self):
|
| 40 |
+
scores_dict = cm2score(self.sum)
|
| 41 |
+
return scores_dict
|
| 42 |
+
|
| 43 |
+
def clear(self):
|
| 44 |
+
self.initialized = False
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class ConfuseMatrixMeter(AverageMeter):
|
| 48 |
+
|
| 49 |
+
def __init__(self, n_class):
|
| 50 |
+
super(ConfuseMatrixMeter, self).__init__()
|
| 51 |
+
self.n_class = n_class
|
| 52 |
+
|
| 53 |
+
def update_cm(self, pr, gt, weight=1):
|
| 54 |
+
|
| 55 |
+
val = get_confuse_matrix(num_classes=self.n_class, label_gts=gt, label_preds=pr)
|
| 56 |
+
self.update(val, weight)
|
| 57 |
+
current_score = cm2F1(val)
|
| 58 |
+
return current_score
|
| 59 |
+
|
| 60 |
+
def get_scores(self):
|
| 61 |
+
scores_dict = cm2score(self.sum)
|
| 62 |
+
return scores_dict
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def harmonic_mean(xs):
|
| 67 |
+
harmonic_mean = len(xs) / sum((x+1e-6)**-1 for x in xs)
|
| 68 |
+
return harmonic_mean
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def cm2F1(confusion_matrix):
|
| 72 |
+
hist = confusion_matrix
|
| 73 |
+
n_class = hist.shape[0]
|
| 74 |
+
tp = np.diag(hist)
|
| 75 |
+
sum_a1 = hist.sum(axis=1)
|
| 76 |
+
sum_a0 = hist.sum(axis=0)
|
| 77 |
+
|
| 78 |
+
acc = tp.sum() / (hist.sum() + np.finfo(np.float32).eps)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
recall = tp / (sum_a1 + np.finfo(np.float32).eps)
|
| 82 |
+
|
| 83 |
+
precision = tp / (sum_a0 + np.finfo(np.float32).eps)
|
| 84 |
+
|
| 85 |
+
F1 = 2 * recall * precision / (recall + precision + np.finfo(np.float32).eps)
|
| 86 |
+
mean_F1 = np.nanmean(F1)
|
| 87 |
+
return mean_F1
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def cm2score(confusion_matrix):
|
| 91 |
+
hist = confusion_matrix
|
| 92 |
+
n_class = hist.shape[0]
|
| 93 |
+
|
| 94 |
+
if n_class > 2:
|
| 95 |
+
|
| 96 |
+
hist_fg = hist[1:, 1:]
|
| 97 |
+
c2hist = np.zeros((2, 2))
|
| 98 |
+
c2hist[0][0] = hist[0][0]
|
| 99 |
+
c2hist[0][1] = hist.sum(1)[0] - hist[0][0]
|
| 100 |
+
c2hist[1][0] = hist.sum(0)[0] - hist[0][0]
|
| 101 |
+
c2hist[1][1] = hist_fg.sum()
|
| 102 |
+
hist_n0 = hist.copy()
|
| 103 |
+
hist_n0[0][0] = 0
|
| 104 |
+
kappa_n0 = cal_kappa(hist_n0)
|
| 105 |
+
iu_scd = np.nan_to_num(np.diag(c2hist) / (c2hist.sum(1) + c2hist.sum(0) - np.diag(c2hist)))
|
| 106 |
+
IoU_fg = iu_scd[1]
|
| 107 |
+
IoU_mean = (iu_scd[0] + iu_scd[1]) / 2
|
| 108 |
+
Sek = (kappa_n0 * math.exp(IoU_fg)) / math.e
|
| 109 |
+
pixel_sum = hist.sum()
|
| 110 |
+
change_pred_sum = pixel_sum - hist.sum(1)[0].sum()
|
| 111 |
+
change_label_sum = pixel_sum - hist.sum(0)[0].sum()
|
| 112 |
+
change_ratio = change_label_sum / pixel_sum
|
| 113 |
+
SC_TP = np.diag(hist[1:, 1:]).sum()
|
| 114 |
+
SC_Precision = np.nan_to_num(SC_TP / change_pred_sum) + np.finfo(np.float32).eps
|
| 115 |
+
SC_Recall = np.nan_to_num(SC_TP / change_label_sum) + np.finfo(np.float32).eps
|
| 116 |
+
Fscd = stats.hmean([SC_Precision, SC_Recall])
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
tp = np.diag(hist)
|
| 120 |
+
sum_a1 = hist.sum(axis=1)
|
| 121 |
+
sum_a0 = hist.sum(axis=0)
|
| 122 |
+
|
| 123 |
+
acc = tp.sum() / (hist.sum() + np.finfo(np.float32).eps)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
recall = tp / (sum_a1 + np.finfo(np.float32).eps)
|
| 127 |
+
|
| 128 |
+
precision = tp / (sum_a0 + np.finfo(np.float32).eps)
|
| 129 |
+
|
| 130 |
+
F1 = 2*recall * precision / (recall + precision + np.finfo(np.float32).eps)
|
| 131 |
+
|
| 132 |
+
mean_F1 = np.nanmean(F1)
|
| 133 |
+
|
| 134 |
+
iu = tp / (sum_a1 + hist.sum(axis=0) - tp + np.finfo(np.float32).eps)
|
| 135 |
+
mean_iu = np.nanmean(iu)
|
| 136 |
+
|
| 137 |
+
freq = sum_a1 / (hist.sum() + np.finfo(np.float32).eps)
|
| 138 |
+
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
|
| 139 |
+
|
| 140 |
+
cls_iou = dict(zip(['iou_'+str(i) for i in range(n_class)], iu))
|
| 141 |
+
|
| 142 |
+
cls_precision = dict(zip(['precision_'+str(i) for i in range(n_class)], precision))
|
| 143 |
+
cls_recall = dict(zip(['recall_'+str(i) for i in range(n_class)], recall))
|
| 144 |
+
cls_F1 = dict(zip(['F1_'+str(i) for i in range(n_class)], F1))
|
| 145 |
+
|
| 146 |
+
if n_class > 2:
|
| 147 |
+
score_dict = {'acc': acc, 'miou': mean_iu, 'mf1':mean_F1, 'SCD_Sek':Sek, 'Fscd':Fscd, 'SCD_IoU_mean':IoU_mean}
|
| 148 |
+
else:
|
| 149 |
+
score_dict = {'acc': acc, 'miou': mean_iu, 'mf1':mean_F1}
|
| 150 |
+
score_dict.update(cls_iou)
|
| 151 |
+
score_dict.update(cls_F1)
|
| 152 |
+
score_dict.update(cls_precision)
|
| 153 |
+
score_dict.update(cls_recall)
|
| 154 |
+
return score_dict
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def get_confuse_matrix(num_classes, label_gts, label_preds):
|
| 158 |
+
|
| 159 |
+
def __fast_hist(label_gt, label_pred):
|
| 160 |
+
|
| 161 |
+
mask = (label_gt >= 0) & (label_gt < num_classes)
|
| 162 |
+
hist = np.bincount(num_classes * label_gt[mask].astype(int) + label_pred[mask],
|
| 163 |
+
minlength=num_classes**2).reshape(num_classes, num_classes)
|
| 164 |
+
return hist
|
| 165 |
+
confusion_matrix = np.zeros((num_classes, num_classes))
|
| 166 |
+
for lt, lp in zip(label_gts, label_preds):
|
| 167 |
+
confusion_matrix += __fast_hist(lt.flatten(), lp.flatten())
|
| 168 |
+
return confusion_matrix
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def get_mIoU(num_classes, label_gts, label_preds):
|
| 172 |
+
confusion_matrix = get_confuse_matrix(num_classes, label_gts, label_preds)
|
| 173 |
+
score_dict = cm2score(confusion_matrix)
|
| 174 |
+
return score_dict['miou']
|
| 175 |
+
|
| 176 |
+
def fast_hist(a, b, n):
|
| 177 |
+
k = (a >= 0) & (a < n)
|
| 178 |
+
return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n)
|
| 179 |
+
|
| 180 |
+
def get_hist(image, label, num_class):
|
| 181 |
+
hist = np.zeros((num_class, num_class))
|
| 182 |
+
hist += fast_hist(image.flatten(), label.flatten(), num_class)
|
| 183 |
+
return hist
|
| 184 |
+
|
| 185 |
+
def cal_kappa(hist):
|
| 186 |
+
if hist.sum() == 0:
|
| 187 |
+
po = 0
|
| 188 |
+
pe = 1
|
| 189 |
+
kappa = 0
|
| 190 |
+
else:
|
| 191 |
+
po = np.diag(hist).sum() / hist.sum()
|
| 192 |
+
pe = np.matmul(hist.sum(1), hist.sum(0).T) / hist.sum() ** 2
|
| 193 |
+
if pe == 1:
|
| 194 |
+
kappa = 0
|
| 195 |
+
else:
|
| 196 |
+
kappa = (po - pe) / (1 - pe)
|
| 197 |
+
return kappa
|
| 198 |
+
|
| 199 |
+
def SCDD_eval_all(preds, labels, num_class):
|
| 200 |
+
hist = np.zeros((num_class, num_class))
|
| 201 |
+
for pred, label in zip(preds, labels):
|
| 202 |
+
infer_array = np.array(pred)
|
| 203 |
+
unique_set = set(np.unique(infer_array))
|
| 204 |
+
assert unique_set.issubset(set([0, 1, 2, 3, 4, 5, 6])), "unrecognized label number"
|
| 205 |
+
label_array = np.array(label)
|
| 206 |
+
assert infer_array.shape == label_array.shape, "The size of prediction and target must be the same"
|
| 207 |
+
hist += get_hist(infer_array, label_array, num_class)
|
| 208 |
+
|
| 209 |
+
hist_fg = hist[1:, 1:]
|
| 210 |
+
c2hist = np.zeros((2, 2))
|
| 211 |
+
c2hist[0][0] = hist[0][0]
|
| 212 |
+
c2hist[0][1] = hist.sum(1)[0] - hist[0][0]
|
| 213 |
+
c2hist[1][0] = hist.sum(0)[0] - hist[0][0]
|
| 214 |
+
c2hist[1][1] = hist_fg.sum()
|
| 215 |
+
hist_n0 = hist.copy()
|
| 216 |
+
hist_n0[0][0] = 0
|
| 217 |
+
kappa_n0 = cal_kappa(hist_n0)
|
| 218 |
+
iu = np.diag(c2hist) / (c2hist.sum(1) + c2hist.sum(0) - np.diag(c2hist))
|
| 219 |
+
IoU_fg = iu[1]
|
| 220 |
+
IoU_mean = (iu[0] + iu[1]) / 2
|
| 221 |
+
Sek = (kappa_n0 * math.exp(IoU_fg)) / math.e
|
| 222 |
+
|
| 223 |
+
pixel_sum = hist.sum()
|
| 224 |
+
change_pred_sum = pixel_sum - hist.sum(1)[0].sum()
|
| 225 |
+
change_label_sum = pixel_sum - hist.sum(0)[0].sum()
|
| 226 |
+
SC_TP = np.diag(hist[1:, 1:]).sum()
|
| 227 |
+
SC_Precision = SC_TP / change_pred_sum
|
| 228 |
+
SC_Recall = SC_TP / change_label_sum
|
| 229 |
+
Fscd = stats.hmean([SC_Precision, SC_Recall])
|
| 230 |
+
return Fscd, IoU_mean, Sek
|
misc/torchutils.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torch import Tensor
|
| 4 |
+
from torch.optim import lr_scheduler
|
| 5 |
+
from typing import Iterable, Set, Tuple
|
| 6 |
+
import logging
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
logger = logging.getLogger('base')
|
| 10 |
+
|
| 11 |
+
def simplex(t: Tensor, axis=1) -> bool:
|
| 12 |
+
_sum = t.sum(axis).float()
|
| 13 |
+
_ones = torch.ones_like(_sum, dtype=torch.float32)
|
| 14 |
+
return torch.allclose(_sum, _ones)
|
| 15 |
+
|
| 16 |
+
def one_hot(t: Tensor, axis=1) -> bool:
|
| 17 |
+
return simplex(t, axis) and sset(t, [0, 1])
|
| 18 |
+
|
| 19 |
+
def uniq(a: Tensor) -> Set:
|
| 20 |
+
return set(torch.unique(a.cpu()).numpy())
|
| 21 |
+
|
| 22 |
+
def sset(a: Tensor, sub: Iterable) -> bool:
|
| 23 |
+
return uniq(a).issubset(sub)
|
| 24 |
+
|
| 25 |
+
def class2one_hot(seg: Tensor, C: int) -> Tensor:
|
| 26 |
+
if len(seg.shape) == 2: # (H, W) 的情况
|
| 27 |
+
seg = seg.unsqueeze(dim=0)
|
| 28 |
+
assert sset(seg, list(range(C))), "输入 Tensor 中的类别索引超出范围!"
|
| 29 |
+
|
| 30 |
+
if seg.ndim == 4:
|
| 31 |
+
seg = seg.squeeze(dim=1)
|
| 32 |
+
|
| 33 |
+
b, w, h = seg.shape # 获取 batch 维度、宽度、高度
|
| 34 |
+
res = torch.stack([seg == c for c in range(C)], dim=1).int()
|
| 35 |
+
assert res.shape == (b, C, w, h)
|
| 36 |
+
assert one_hot(res), "转换后的 Tensor 不是 one-hot 编码!"
|
| 37 |
+
|
| 38 |
+
return res
|
| 39 |
+
|
| 40 |
+
def get_scheduler(optimizer, args):
|
| 41 |
+
"""返回学习率调度器"""
|
| 42 |
+
if args['scheduler']['lr_policy'] == 'linear':
|
| 43 |
+
def lambda_rule(epoch):
|
| 44 |
+
return 1.0 - epoch / float(args['n_epoch'] + 1)
|
| 45 |
+
return lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
|
| 46 |
+
|
| 47 |
+
elif args['scheduler']['lr_policy'] == 'step':
|
| 48 |
+
step_size = args['n_epoch'] // args['scheduler']['n_steps']
|
| 49 |
+
return lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=args['scheduler']['gamma'])
|
| 50 |
+
|
| 51 |
+
else:
|
| 52 |
+
raise NotImplementedError(f"学习率策略 [{args['scheduler']['lr_policy']}] 未实现!")
|
| 53 |
+
|
| 54 |
+
def save_network(opt, epoch, cd_model, optimizer, is_best_model=False):
|
| 55 |
+
""" 保存当前 epoch 的模型和优化器参数 """
|
| 56 |
+
|
| 57 |
+
os.makedirs(opt['path_cd']['checkpoint'], exist_ok=True)
|
| 58 |
+
|
| 59 |
+
cd_gen_path = os.path.join(opt['path_cd']['checkpoint'], f'cd_model_E{epoch}_gen.pth')
|
| 60 |
+
cd_opt_path = os.path.join(opt['path_cd']['checkpoint'], f'cd_model_E{epoch}_opt.pth')
|
| 61 |
+
|
| 62 |
+
best_cd_gen_path = os.path.join(opt['path_cd']['checkpoint'], 'best_cd_model_gen.pth')
|
| 63 |
+
best_cd_opt_path = os.path.join(opt['path_cd']['checkpoint'], 'best_cd_model_opt.pth')
|
| 64 |
+
|
| 65 |
+
network = cd_model.module if isinstance(cd_model, nn.DataParallel) else cd_model
|
| 66 |
+
state_dict = {key: param.cpu() for key, param in network.state_dict().items()}
|
| 67 |
+
|
| 68 |
+
torch.save(state_dict, cd_gen_path)
|
| 69 |
+
if is_best_model:
|
| 70 |
+
torch.save(state_dict, best_cd_gen_path)
|
| 71 |
+
|
| 72 |
+
opt_state = {
|
| 73 |
+
'epoch': epoch,
|
| 74 |
+
'scheduler': None,
|
| 75 |
+
'optimizer': optimizer.state_dict()
|
| 76 |
+
}
|
| 77 |
+
torch.save(opt_state, cd_opt_path)
|
| 78 |
+
if is_best_model:
|
| 79 |
+
torch.save(opt_state, best_cd_opt_path)
|
| 80 |
+
|
| 81 |
+
logger.info(f'✅ 当前模型已保存至 [{cd_gen_path}]')
|
| 82 |
+
if is_best_model:
|
| 83 |
+
logger.info(f'🏆 最佳模型已更新至 [{best_cd_gen_path}]')
|