|
--- |
|
language: fr |
|
datasets: |
|
- common_voice |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: wav2vec2-large-xlsr-53-French by Ilyes Rebai |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice fr |
|
type: common_voice |
|
args: fr |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 12.82 |
|
--- |
|
## Evaluation on Common Voice FR Test |
|
The script used for training and evaluation can be found here: https://github.com/irebai/wav2vec2 |
|
|
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import ( |
|
Wav2Vec2ForCTC, |
|
Wav2Vec2Processor, |
|
) |
|
import re |
|
|
|
model_name = "Ilyes/wav2vec2-large-xlsr-53-french" |
|
|
|
device = "cpu" # "cuda" |
|
|
|
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) |
|
processor = Wav2Vec2Processor.from_pretrained(model_name) |
|
|
|
ds = load_dataset("common_voice", "fr", split="test", cache_dir="./data/fr") |
|
|
|
chars_to_ignore_regex = '[\,\?\.\!\;\:\"\β\%\β\β\οΏ½\β\β\β\β\β\β¦\Β·\!\Η\?\Β«\βΉ\Β»\βΊβ\β\\ΚΏ\ΚΎ\β\β\\|\.\,\;\:\*\β\β\β\β\_\/\:\Λ\;\,\=\Β«\Β»\β]' |
|
def map_to_array(batch): |
|
speech, _ = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() |
|
batch["sampling_rate"] = resampler.new_freq |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("β", "'") |
|
return batch |
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
ds = ds.map(map_to_array) |
|
|
|
def map_to_pred(batch): |
|
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") |
|
input_values = features.input_values.to(device) |
|
attention_mask = features.attention_mask.to(device) |
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["predicted"] = processor.batch_decode(pred_ids) |
|
batch["target"] = batch["sentence"] |
|
return batch |
|
|
|
result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) |
|
wer = load_metric("wer") |
|
print(wer.compute(predictions=result["predicted"], references=result["target"])) |
|
``` |
|
|
|
## Results |
|
|
|
WER=12.82% |
|
|
|
CER=4.40% |
|
|