metadata
language:
- ru
- en
- ru-RU
tags:
- xlm-roberta-large
datasets:
- IlyaGusev/headline_cause
license: apache-2.0
XLM-RoBERTa HeadlineCause Simple
Model description
[More Information Needed]
Intended uses & limitations
How to use
from tqdm.notebook import tqdm
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
def get_batch(data, batch_size):
start_index = 0
while start_index < len(data):
end_index = start_index + batch_size
batch = data[start_index:end_index]
yield batch
start_index = end_index
def pipe_predict(data, pipe, batch_size=64):
raw_preds = []
for batch in tqdm(get_batch(data, batch_size)):
raw_preds += pipe(batch)
return raw_preds
MODEL_NAME = TOKENIZER_NAME = "IlyaGusev/xlm_roberta_large_headline_cause_simple"
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME, do_lower_case=False)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
model.eval()
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, framework="pt", return_all_scores=True)
texts = [
(
"Judge issues order to allow indoor worship in NC churches",
"Some local churches resume indoor services after judge lifted NC governor’s restriction"
),
(
"Gov. Kevin Stitt defends $2 million purchase of malaria drug touted by Trump",
"Oklahoma spent $2 million on malaria drug touted by Trump"
),
(
"Песков опроверг свой перевод на удаленку",
"Дмитрий Песков перешел на удаленку"
)
]
pipe_predict(texts, pipe)
Limitations and bias
[More Information Needed]
Training data
[More Information Needed]
Training procedure
[More Information Needed]
Eval results
[More Information Needed]
BibTeX entry and citation info
@misc{gusev2021headlinecause,
title={HeadlineCause: A Dataset of News Headlines for Detecting Casualties},
author={Ilya Gusev and Alexey Tikhonov},
year={2021},
eprint={2108.12626},
archivePrefix={arXiv},
primaryClass={cs.CL}
}