metadata
language:
- ru
tags:
- token-classification
license: apache-2.0
widget:
- text: Ёпта, меня зовут придурок и я живу в жопе
RuBERTConv Toxic Editor
Model description
Tagging model for detoxification based on rubert-base-cased-conversational.
4 possible classes:
- Equal = save tokens
- Replace = replace tokens with mask
- Delete = remove tokens
- Insert = insert mask before tokens
Use in pair with mask filler.
Intended uses & limitations
How to use
Colab: link
import torch
from transformers import AutoTokenizer, pipeline
tagger_model_name = "IlyaGusev/rubertconv_toxic_editor"
device = "cuda" if torch.cuda.is_available() else "cpu"
device_num = 0 if device == "cuda" else -1
tagger_pipe = pipeline(
"token-classification",
model=tagger_model_name,
tokenizer=tagger_model_name,
framework="pt",
device=device_num,
aggregation_strategy="max"
)
text = "..."
tagger_predictions = tagger_pipe([text], batch_size=1)
sample_predictions = tagger_predictions[0]
print(sample_predictions)
Training data
- Dataset: russe_detox_2022
Training procedure
- Parallel corpus convertion: compute_tags.py
- Training script: train.py
- Pipeline step: dvc.yaml, train_marker
Eval results
TBA