Iker commited on
Commit
a8974fe
·
verified ·
1 Parent(s): 871c699

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -148
README.md CHANGED
@@ -1,199 +1,133 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
 
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
 
 
 
 
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ base_model: Unbabel/TowerInstruct-7B-v0.2
4
+ license: apache-2.0
5
+ datasets:
6
+ - Iker/InstructTranslation-EN-ES
7
+ language:
8
+ - en
9
+ - es
10
+ pipeline_tag: text-generation
11
+ tags:
12
+ - translation
13
  ---
14
 
15
+ This is a [TowerInstruct-7B](https://huggingface.co/Unbabel/TowerInstruct-7B-v0.2) model fine-tuned for translating instructions datasets from English into Spanish. This model has GPT4 translation quality, but you can run it on your own machine for free 🎉
16
 
17
+ The model has been finetuned using ~1.500 prompts and answers from [teknium/OpenHermes-2.5](teknium/OpenHermes-2.5) translated to Spanish using GPT-4-0125-preview. The dataset is available here: https://huggingface.co/datasets/Iker/InstructTranslation-EN-ES/
18
 
19
 
20
 
21
+ # Demo
22
 
23
+ ```python
24
+ import torch
25
+ from transformers import pipeline
26
 
27
+ og = pipeline("text-generation", model="Unbabel/TowerInstruct-13B-v0.1", torch_dtype=torch.bfloat16, device_map=0)
28
+ fn7 = pipeline("text-generation", model="Iker/TowerInstruct-7B-v0.2-EN2ES", torch_dtype=torch.bfloat16, device_map=1)
29
+ fn = pipeline("text-generation", model="Iker/TowerInstruct-13B-v0.1-EN2ES", torch_dtype=torch.bfloat16, device_map=2)
30
 
 
31
 
32
+ msg = """
33
+ Let's use Bayes' theorem again to solve this problem:\n\nLet A represent the event that the man actually has the ability to predict dice rolls with 90% accuracy, and C represent the event of predicting correctly on the first attempt.\n\nWe want to find P(A|C), the probability that the man actually has the ability given that he predicted correctly on his first attempt.\n\nBayes' theorem states that P(A|C) = P(C|A) * P(A) / P(C)\n\nFirst, let's find P(C|A): the probability of predicting correctly on the first attempt if the man actually has the ability. Since he claims 90% accuracy, this probability is 0.9.\n\nNext, let's find P(A): the probability that someone actually has the ability to predict dice rolls with 90% accuracy. We are told this is 1%, so P(A) = 0.01.\n\nNow we need to find P(C): the overall probability of predicting correctly on the first attempt. This can be calculated as the sum of probabilities for each case: P(C) = P(C|A) * P(A) + P(C|¬A) * P(¬A), where ¬A represents not having the ability and P(¬A) = 1 - P(A) = 0.99.\n\nTo find P(C|¬A), the probability of predicting correctly on the first attempt without the ability, we use the fact that there's a 1/6 chance of guessing correctly by random chance: P(C|¬A) = 1/6.\n\nSo, P(C) = (0.9)*(0.01) + (1/6)*(0.99) = 0.009 + 0.165 = 0.174.\n\nFinally, we can calculate P(A|C) using Bayes' theorem:\n\nP(A|C) = P(C|A) * P(A) / P(C) = (0.9)*(0.01) / (0.174) ≈ 0.0517.\n\nTherefore, the probability that the man actually has the ability to predict dice rolls with 90% accuracy is approximately 5.17%.
34
+ """.strip()
 
 
 
 
35
 
36
+ messages = [
37
+ {"role": "user",
38
+ "content": f"Translate the following text from English into Spanish.\n{msg}\nSpanish:"},
39
+ ]
40
 
41
+ prompt = og.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
42
+ outputs = og(prompt, max_new_tokens=1024, do_sample=False)
43
+ print(outputs[0]["generated_text"])
44
 
45
+ prompt = fn7.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
46
+ outputs = fn7(prompt, max_new_tokens=1024, do_sample=False)
47
+ print(outputs[0]["generated_text"])
48
 
49
+ prompt = fn.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
50
+ outputs = fn(prompt, max_new_tokens=1024, do_sample=False)
51
+ print(outputs[0]["generated_text"])
52
+ ```
53
 
54
+ ### Unbabel/TowerInstruct-13B-v0.1
55
+ This model fails with very large inputs, the answer is in Russian instead of Spanish 🥴
56
+ ```
57
+ Воспроизвем теорему Байеса для решения этой задачи:
58
 
59
+ Предположим, что A означает событие, когда человек действительно обладает способностью предсказывать результаты броска кубика с то��ностью 90%, а C означает событие правильного предсказания на первой попытке.
60
 
61
+ Мы хотим найти P(A|C), вероятность того, что у человека действительно есть способность, если он правильно предсказал на первой попытке.
62
 
63
+ Теорема Байеса утверждает, что P(A|C) = P(C|A) * P(A) / P(C)
64
 
65
+ Сначала определим P(C|A): вероятность правильного предсказания на первой попытке, если у человека действительно есть способность. Поскольку он утверждает, что его точность составляет 90%, эта вероятность равна 0,9.
66
 
67
+ Далее определим P(A): вероятность того, что у кого-то действительно есть способность предсказывать результаты броска кубика с точностью 90%. Нам сказано, что она составляет 1%, поэтому P(A) = 0,01.
68
 
69
+ Теперь нам нужно найти P(C): общую вероятность правильного предсказания на первой попытке. Это можно рассчитать как сумму вероятностей для каждого случая: P(C) = P(C|A) * P(A) + P(C|¬A) * P(¬A), где ¬A означает отсутствие способности, и P(¬A) = 1 - P(A) = 0,99.
70
 
71
+ Чтобы найти P(C|¬A), вероятность правильного предсказания на первой попытке без способности, мы используем тот факт, что существует 1/6 шанс сделать правильный выбор случайно: P(C|¬A) = 1/6.
72
 
73
+ Таким образом, P(C) = (0,9)*(0,01) / (0,174) 0,009 + 0,165 = 0,174.
74
 
75
+ Наконец, мы можем рассчитать P(A|C) с помощью теоремы Байеса:
76
 
77
+ P(A|C) = P(C|A) * P(A) / P(C) = (0,9)*(0,01) / (0,174) 0,0517.
78
 
79
+ Таким образом, вероятность того, что у человека действительно есть способность предсказывать результаты броска кубика с точностью 90%, составляет примерно 5,17%.
80
+ ```
81
 
82
+ ### Iker/TowerInstruct-7B-v0.2-EN2ES
83
+ ```
84
+ Vamos a usar de nuevo el teorema de Bayes para resolver este problema:
85
 
86
+ A representa el evento de que el hombre realmente tenga la capacidad de predecir lanzamientos de dados con un 90% de precisión, y C representa el evento de predecir correctamente en el primer intento.
87
 
88
+ Queremos encontrar P(A|C), la probabilidad de que el hombre realmente tenga la capacidad dado que predecía correctamente en su primer intento.
89
 
90
+ El teorema de Bayes establece que P(A|C) = P(C|A) * P(A) / P(C)
91
 
92
+ Primero, vamos a encontrar P(C|A): la probabilidad de predecir correctamente en el primer intento si el hombre realmente tiene la capacidad. Dado que afirma un 90% de precisión, esta probabilidad es 0.9.
93
 
94
+ A continuación, vamos a encontrar P(A): la probabilidad de que alguien realmente tenga la capacidad de predecir lanzamientos de dados con un 90% de precisión. Nos dicen que esto es del 1%, así que P(A) = 0.01.
95
 
96
+ Ahora necesitamos encontrar P(C): la probabilidad total de predecir correctamente en el primer intento. Esto se puede calcular como la suma de probabilidades para cada caso: P(C) = P(C|A) * P(A) + P(C|¬A) * P(¬A), donde ¬A representa no tener la capacidad y P(¬A) = 1 - P(A) = 0.99.
97
 
98
+ Para encontrar P(C|¬A), la probabilidad de predecir correctamente en el primer intento sin la capacidad, usamos el hecho de que hay una probabilidad del 1/6 de adivinar correctamente por azar: P(C|¬A) = 1/6.
99
 
100
+ Así, P(C) = (0.9)*(0.01) + (1/6)*(0.99) = 0.009 + 0.165 = 0.174.
101
 
102
+ Finalmente, podemos calcular P(A|C) usando el teorema de Bayes:
103
 
104
+ P(A|C) = P(C|A) * P(A) / P(C) = (0.9)*(0.01) / (0.174) ≈ 0.0517.
105
 
106
+ Por lo tanto, la probabilidad de que el hombre realmente tenga la capacidad de predecir lanzamientos de dados con un 90% de precisión es aproximadamente del 5.17%.
107
+ ```
108
+ ### Iker/TowerInstruct-13B-v0.1-EN2ES
109
+ ```
110
+ Vamos a usar de nuevo el teorema de Bayes para resolver este problema:
111
 
112
+ Sea A el evento de que el hombre realmente tenga la capacidad de predecir lanzamientos de dados con un 90% de precisión, y C el evento de predecir correctamente en el primer intento.
113
 
114
+ Queremos encontrar P(A|C), la probabilidad de que el hombre realmente tenga la capacidad dada que predijo correctamente en su primer intento.
115
 
116
+ El teorema de Bayes establece que P(A|C) = P(C|A) * P(A) / P(C)
117
 
118
+ Primero, vamos a encontrar P(C|A): la probabilidad de predecir correctamente en el primer intento si el hombre realmente tiene la capacidad. Dado que afirma un 90% de precisión, esta probabilidad es 0.9.
119
 
120
+ A continuación, vamos a encontrar P(A): la probabilidad de que alguien realmente tenga la capacidad de predecir lanzamientos de dados con un 90% de precisión. Se nos dice que este es 1%, así que P(A) = 0.01.
121
 
122
+ Ahora necesitamos encontrar P(C): la probabilidad general de predecir correctamente en el primer intento. Esto puede calcularse como la suma de probabilidades para cada caso: P(C) = P(C|A) * P(A) + P(C|¬A) * P(¬A), donde ¬A representa no tener la capacidad y P(¬A) = 1 - P(A) = 0.99.
123
 
124
+ Para encontrar P(C|¬A), la probabilidad de predecir correctamente en el primer intento sin la capacidad, utilizamos el hecho de que hay una probabilidad de 1/6 de adivinar correctamente por casualidad: P(C|¬A) = 1/6.
125
 
126
+ Así que, P(C) = (0.9)*(0.01) + (1/6)*(0.99) = 0.009 + 0.165 = 0.174.
127
 
128
+ Finalmente, podemos calcular P(A|C) usando el teorema de Bayes:
129
 
130
+ P(A|C) = P(C|A) * P(A) / P(C) = (0.9)*(0.01) / (0.174) ≈ 0.0517.
131
 
132
+ Por lo tanto, la probabilidad de que el hombre realmente tenga la capacidad de predecir lanzamientos de dados con un 90% de precisión es aproximadamente 5.17%.
133
+ ```