Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +1592 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
metrics:
|
7 |
+
- cosine_accuracy
|
8 |
+
- cosine_accuracy_threshold
|
9 |
+
- cosine_f1
|
10 |
+
- cosine_f1_threshold
|
11 |
+
- cosine_precision
|
12 |
+
- cosine_recall
|
13 |
+
- cosine_ap
|
14 |
+
- dot_accuracy
|
15 |
+
- dot_accuracy_threshold
|
16 |
+
- dot_f1
|
17 |
+
- dot_f1_threshold
|
18 |
+
- dot_precision
|
19 |
+
- dot_recall
|
20 |
+
- dot_ap
|
21 |
+
- manhattan_accuracy
|
22 |
+
- manhattan_accuracy_threshold
|
23 |
+
- manhattan_f1
|
24 |
+
- manhattan_f1_threshold
|
25 |
+
- manhattan_precision
|
26 |
+
- manhattan_recall
|
27 |
+
- manhattan_ap
|
28 |
+
- euclidean_accuracy
|
29 |
+
- euclidean_accuracy_threshold
|
30 |
+
- euclidean_f1
|
31 |
+
- euclidean_f1_threshold
|
32 |
+
- euclidean_precision
|
33 |
+
- euclidean_recall
|
34 |
+
- euclidean_ap
|
35 |
+
- max_accuracy
|
36 |
+
- max_accuracy_threshold
|
37 |
+
- max_f1
|
38 |
+
- max_f1_threshold
|
39 |
+
- max_precision
|
40 |
+
- max_recall
|
41 |
+
- max_ap
|
42 |
+
pipeline_tag: sentence-similarity
|
43 |
+
tags:
|
44 |
+
- sentence-transformers
|
45 |
+
- sentence-similarity
|
46 |
+
- feature-extraction
|
47 |
+
- generated_from_trainer
|
48 |
+
- dataset_size:645861
|
49 |
+
- loss:ContrastiveLoss
|
50 |
+
widget:
|
51 |
+
- source_sentence: There was an Eye OS alert.
|
52 |
+
sentences:
|
53 |
+
- i see lots of tubes
|
54 |
+
- On the door is lima mike zero twenty three north exit
|
55 |
+
- EyeOS, that’s some kind of tech, right
|
56 |
+
- source_sentence: how to use
|
57 |
+
sentences:
|
58 |
+
- how do i use it
|
59 |
+
- This fallen panel might lead to the control room.
|
60 |
+
- The rings appear to be completely unmoving now.
|
61 |
+
- source_sentence: I'm unsure about this room's name how do I find out?
|
62 |
+
sentences:
|
63 |
+
- How do I identify the room I'm in without any obvious signs?
|
64 |
+
- The door shows l m zero twenty three north exit
|
65 |
+
- it reads Cryochamber Medical Support Systems
|
66 |
+
- source_sentence: i see Cryochamber Atmospheric Sealing
|
67 |
+
sentences:
|
68 |
+
- Can you guide me on how to identify this room?
|
69 |
+
- it's Laboratory Chemical Storage
|
70 |
+
- it reads Cryochamber Atmospheric Sealing
|
71 |
+
- source_sentence: floating up
|
72 |
+
sentences:
|
73 |
+
- All indicators are blue.
|
74 |
+
- i can see an interface
|
75 |
+
- Found a narrow corridor leading somewhere.
|
76 |
+
model-index:
|
77 |
+
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
78 |
+
results:
|
79 |
+
- task:
|
80 |
+
type: binary-classification
|
81 |
+
name: Binary Classification
|
82 |
+
dataset:
|
83 |
+
name: sts dev
|
84 |
+
type: sts-dev
|
85 |
+
metrics:
|
86 |
+
- type: cosine_accuracy
|
87 |
+
value: 0.9002097965885251
|
88 |
+
name: Cosine Accuracy
|
89 |
+
- type: cosine_accuracy_threshold
|
90 |
+
value: 0.4494956135749817
|
91 |
+
name: Cosine Accuracy Threshold
|
92 |
+
- type: cosine_f1
|
93 |
+
value: 0.8908462575859745
|
94 |
+
name: Cosine F1
|
95 |
+
- type: cosine_f1_threshold
|
96 |
+
value: 0.41577932238578796
|
97 |
+
name: Cosine F1 Threshold
|
98 |
+
- type: cosine_precision
|
99 |
+
value: 0.8739044154126013
|
100 |
+
name: Cosine Precision
|
101 |
+
- type: cosine_recall
|
102 |
+
value: 0.908457968024755
|
103 |
+
name: Cosine Recall
|
104 |
+
- type: cosine_ap
|
105 |
+
value: 0.9618224590785398
|
106 |
+
name: Cosine Ap
|
107 |
+
- type: dot_accuracy
|
108 |
+
value: 0.9002097965885251
|
109 |
+
name: Dot Accuracy
|
110 |
+
- type: dot_accuracy_threshold
|
111 |
+
value: 0.4494956135749817
|
112 |
+
name: Dot Accuracy Threshold
|
113 |
+
- type: dot_f1
|
114 |
+
value: 0.8908462575859745
|
115 |
+
name: Dot F1
|
116 |
+
- type: dot_f1_threshold
|
117 |
+
value: 0.4157792925834656
|
118 |
+
name: Dot F1 Threshold
|
119 |
+
- type: dot_precision
|
120 |
+
value: 0.8739044154126013
|
121 |
+
name: Dot Precision
|
122 |
+
- type: dot_recall
|
123 |
+
value: 0.908457968024755
|
124 |
+
name: Dot Recall
|
125 |
+
- type: dot_ap
|
126 |
+
value: 0.961822458350164
|
127 |
+
name: Dot Ap
|
128 |
+
- type: manhattan_accuracy
|
129 |
+
value: 0.8989979280958028
|
130 |
+
name: Manhattan Accuracy
|
131 |
+
- type: manhattan_accuracy_threshold
|
132 |
+
value: 22.644113540649414
|
133 |
+
name: Manhattan Accuracy Threshold
|
134 |
+
- type: manhattan_f1
|
135 |
+
value: 0.8901100449479366
|
136 |
+
name: Manhattan F1
|
137 |
+
- type: manhattan_f1_threshold
|
138 |
+
value: 23.330610275268555
|
139 |
+
name: Manhattan F1 Threshold
|
140 |
+
- type: manhattan_precision
|
141 |
+
value: 0.8757104438714686
|
142 |
+
name: Manhattan Precision
|
143 |
+
- type: manhattan_recall
|
144 |
+
value: 0.9049911179875079
|
145 |
+
name: Manhattan Recall
|
146 |
+
- type: manhattan_ap
|
147 |
+
value: 0.9615309074220045
|
148 |
+
name: Manhattan Ap
|
149 |
+
- type: euclidean_accuracy
|
150 |
+
value: 0.9002097965885251
|
151 |
+
name: Euclidean Accuracy
|
152 |
+
- type: euclidean_accuracy_threshold
|
153 |
+
value: 1.0492897033691406
|
154 |
+
name: Euclidean Accuracy Threshold
|
155 |
+
- type: euclidean_f1
|
156 |
+
value: 0.8908462575859745
|
157 |
+
name: Euclidean F1
|
158 |
+
- type: euclidean_f1_threshold
|
159 |
+
value: 1.080944538116455
|
160 |
+
name: Euclidean F1 Threshold
|
161 |
+
- type: euclidean_precision
|
162 |
+
value: 0.8739044154126013
|
163 |
+
name: Euclidean Precision
|
164 |
+
- type: euclidean_recall
|
165 |
+
value: 0.908457968024755
|
166 |
+
name: Euclidean Recall
|
167 |
+
- type: euclidean_ap
|
168 |
+
value: 0.9618224553002042
|
169 |
+
name: Euclidean Ap
|
170 |
+
- type: max_accuracy
|
171 |
+
value: 0.9002097965885251
|
172 |
+
name: Max Accuracy
|
173 |
+
- type: max_accuracy_threshold
|
174 |
+
value: 22.644113540649414
|
175 |
+
name: Max Accuracy Threshold
|
176 |
+
- type: max_f1
|
177 |
+
value: 0.8908462575859745
|
178 |
+
name: Max F1
|
179 |
+
- type: max_f1_threshold
|
180 |
+
value: 23.330610275268555
|
181 |
+
name: Max F1 Threshold
|
182 |
+
- type: max_precision
|
183 |
+
value: 0.8757104438714686
|
184 |
+
name: Max Precision
|
185 |
+
- type: max_recall
|
186 |
+
value: 0.908457968024755
|
187 |
+
name: Max Recall
|
188 |
+
- type: max_ap
|
189 |
+
value: 0.9618224590785398
|
190 |
+
name: Max Ap
|
191 |
+
---
|
192 |
+
|
193 |
+
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
194 |
+
|
195 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
196 |
+
|
197 |
+
## Model Details
|
198 |
+
|
199 |
+
### Model Description
|
200 |
+
- **Model Type:** Sentence Transformer
|
201 |
+
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
|
202 |
+
- **Maximum Sequence Length:** 384 tokens
|
203 |
+
- **Output Dimensionality:** 768 tokens
|
204 |
+
- **Similarity Function:** Cosine Similarity
|
205 |
+
<!-- - **Training Dataset:** Unknown -->
|
206 |
+
<!-- - **Language:** Unknown -->
|
207 |
+
<!-- - **License:** Unknown -->
|
208 |
+
|
209 |
+
### Model Sources
|
210 |
+
|
211 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
212 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
213 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
214 |
+
|
215 |
+
### Full Model Architecture
|
216 |
+
|
217 |
+
```
|
218 |
+
SentenceTransformer(
|
219 |
+
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
220 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
221 |
+
(2): Normalize()
|
222 |
+
)
|
223 |
+
```
|
224 |
+
|
225 |
+
## Usage
|
226 |
+
|
227 |
+
### Direct Usage (Sentence Transformers)
|
228 |
+
|
229 |
+
First install the Sentence Transformers library:
|
230 |
+
|
231 |
+
```bash
|
232 |
+
pip install -U sentence-transformers
|
233 |
+
```
|
234 |
+
|
235 |
+
Then you can load this model and run inference.
|
236 |
+
```python
|
237 |
+
from sentence_transformers import SentenceTransformer
|
238 |
+
|
239 |
+
# Download from the 🤗 Hub
|
240 |
+
model = SentenceTransformer("IconicAI/all-mpnet-base-v2-anteater")
|
241 |
+
# Run inference
|
242 |
+
sentences = [
|
243 |
+
'floating up',
|
244 |
+
'i can see an interface',
|
245 |
+
'All indicators are blue.',
|
246 |
+
]
|
247 |
+
embeddings = model.encode(sentences)
|
248 |
+
print(embeddings.shape)
|
249 |
+
# [3, 768]
|
250 |
+
|
251 |
+
# Get the similarity scores for the embeddings
|
252 |
+
similarities = model.similarity(embeddings, embeddings)
|
253 |
+
print(similarities.shape)
|
254 |
+
# [3, 3]
|
255 |
+
```
|
256 |
+
|
257 |
+
<!--
|
258 |
+
### Direct Usage (Transformers)
|
259 |
+
|
260 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
261 |
+
|
262 |
+
</details>
|
263 |
+
-->
|
264 |
+
|
265 |
+
<!--
|
266 |
+
### Downstream Usage (Sentence Transformers)
|
267 |
+
|
268 |
+
You can finetune this model on your own dataset.
|
269 |
+
|
270 |
+
<details><summary>Click to expand</summary>
|
271 |
+
|
272 |
+
</details>
|
273 |
+
-->
|
274 |
+
|
275 |
+
<!--
|
276 |
+
### Out-of-Scope Use
|
277 |
+
|
278 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
279 |
+
-->
|
280 |
+
|
281 |
+
## Evaluation
|
282 |
+
|
283 |
+
### Metrics
|
284 |
+
|
285 |
+
#### Binary Classification
|
286 |
+
* Dataset: `sts-dev`
|
287 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
288 |
+
|
289 |
+
| Metric | Value |
|
290 |
+
|:-----------------------------|:-----------|
|
291 |
+
| cosine_accuracy | 0.9002 |
|
292 |
+
| cosine_accuracy_threshold | 0.4495 |
|
293 |
+
| cosine_f1 | 0.8908 |
|
294 |
+
| cosine_f1_threshold | 0.4158 |
|
295 |
+
| cosine_precision | 0.8739 |
|
296 |
+
| cosine_recall | 0.9085 |
|
297 |
+
| cosine_ap | 0.9618 |
|
298 |
+
| dot_accuracy | 0.9002 |
|
299 |
+
| dot_accuracy_threshold | 0.4495 |
|
300 |
+
| dot_f1 | 0.8908 |
|
301 |
+
| dot_f1_threshold | 0.4158 |
|
302 |
+
| dot_precision | 0.8739 |
|
303 |
+
| dot_recall | 0.9085 |
|
304 |
+
| dot_ap | 0.9618 |
|
305 |
+
| manhattan_accuracy | 0.899 |
|
306 |
+
| manhattan_accuracy_threshold | 22.6441 |
|
307 |
+
| manhattan_f1 | 0.8901 |
|
308 |
+
| manhattan_f1_threshold | 23.3306 |
|
309 |
+
| manhattan_precision | 0.8757 |
|
310 |
+
| manhattan_recall | 0.905 |
|
311 |
+
| manhattan_ap | 0.9615 |
|
312 |
+
| euclidean_accuracy | 0.9002 |
|
313 |
+
| euclidean_accuracy_threshold | 1.0493 |
|
314 |
+
| euclidean_f1 | 0.8908 |
|
315 |
+
| euclidean_f1_threshold | 1.0809 |
|
316 |
+
| euclidean_precision | 0.8739 |
|
317 |
+
| euclidean_recall | 0.9085 |
|
318 |
+
| euclidean_ap | 0.9618 |
|
319 |
+
| max_accuracy | 0.9002 |
|
320 |
+
| max_accuracy_threshold | 22.6441 |
|
321 |
+
| max_f1 | 0.8908 |
|
322 |
+
| max_f1_threshold | 23.3306 |
|
323 |
+
| max_precision | 0.8757 |
|
324 |
+
| max_recall | 0.9085 |
|
325 |
+
| **max_ap** | **0.9618** |
|
326 |
+
|
327 |
+
<!--
|
328 |
+
## Bias, Risks and Limitations
|
329 |
+
|
330 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
331 |
+
-->
|
332 |
+
|
333 |
+
<!--
|
334 |
+
### Recommendations
|
335 |
+
|
336 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
337 |
+
-->
|
338 |
+
|
339 |
+
## Training Details
|
340 |
+
|
341 |
+
### Training Dataset
|
342 |
+
|
343 |
+
#### Unnamed Dataset
|
344 |
+
|
345 |
+
|
346 |
+
* Size: 645,861 training samples
|
347 |
+
* Columns: <code>example1</code>, <code>example2</code>, and <code>label</code>
|
348 |
+
* Approximate statistics based on the first 1000 samples:
|
349 |
+
| | example1 | example2 | label |
|
350 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
|
351 |
+
| type | string | string | int |
|
352 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 9.02 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.19 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
|
353 |
+
* Samples:
|
354 |
+
| example1 | example2 | label |
|
355 |
+
|:---------------------------------------------------------------------------------|:--------------------------------------------------------------|:---------------|
|
356 |
+
| <code>Drones are present all around here.</code> | <code>What are those drones doing buzzing around here?</code> | <code>1</code> |
|
357 |
+
| <code>am i the only one</code> | <code>am i the only one alive on this ship</code> | <code>1</code> |
|
358 |
+
| <code>I’m in a room with a door in front of me and a terminal on the wall</code> | <code>mechanics room</code> | <code>1</code> |
|
359 |
+
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
360 |
+
```json
|
361 |
+
{
|
362 |
+
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
|
363 |
+
"margin": 1.0,
|
364 |
+
"size_average": true
|
365 |
+
}
|
366 |
+
```
|
367 |
+
|
368 |
+
### Evaluation Dataset
|
369 |
+
|
370 |
+
#### Unnamed Dataset
|
371 |
+
|
372 |
+
|
373 |
+
* Size: 76,741 evaluation samples
|
374 |
+
* Columns: <code>example1</code>, <code>example2</code>, and <code>label</code>
|
375 |
+
* Approximate statistics based on the first 1000 samples:
|
376 |
+
| | example1 | example2 | label |
|
377 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
|
378 |
+
| type | string | string | int |
|
379 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 9.25 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.15 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
|
380 |
+
* Samples:
|
381 |
+
| example1 | example2 | label |
|
382 |
+
|:----------------------------------------------|:----------------------------------------------------------|:---------------|
|
383 |
+
| <code>Not much, how about you?</code> | <code>Nothing, you?</code> | <code>1</code> |
|
384 |
+
| <code>Rings stopped moving.</code> | <code>I notice the rings are not spinning anymore.</code> | <code>1</code> |
|
385 |
+
| <code>it's Laboratory Chemical Storage</code> | <code>the switch is Laboratory Chemical Storage</code> | <code>1</code> |
|
386 |
+
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
387 |
+
```json
|
388 |
+
{
|
389 |
+
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
|
390 |
+
"margin": 1.0,
|
391 |
+
"size_average": true
|
392 |
+
}
|
393 |
+
```
|
394 |
+
|
395 |
+
### Training Hyperparameters
|
396 |
+
#### Non-Default Hyperparameters
|
397 |
+
|
398 |
+
- `eval_strategy`: steps
|
399 |
+
- `per_device_train_batch_size`: 256
|
400 |
+
- `per_device_eval_batch_size`: 256
|
401 |
+
- `learning_rate`: 1e-07
|
402 |
+
- `weight_decay`: 0.01
|
403 |
+
- `max_grad_norm`: 0.02
|
404 |
+
- `num_train_epochs`: 5
|
405 |
+
- `warmup_steps`: 100
|
406 |
+
- `bf16`: True
|
407 |
+
- `eval_on_start`: True
|
408 |
+
|
409 |
+
#### All Hyperparameters
|
410 |
+
<details><summary>Click to expand</summary>
|
411 |
+
|
412 |
+
- `overwrite_output_dir`: False
|
413 |
+
- `do_predict`: False
|
414 |
+
- `eval_strategy`: steps
|
415 |
+
- `prediction_loss_only`: True
|
416 |
+
- `per_device_train_batch_size`: 256
|
417 |
+
- `per_device_eval_batch_size`: 256
|
418 |
+
- `per_gpu_train_batch_size`: None
|
419 |
+
- `per_gpu_eval_batch_size`: None
|
420 |
+
- `gradient_accumulation_steps`: 1
|
421 |
+
- `eval_accumulation_steps`: None
|
422 |
+
- `torch_empty_cache_steps`: None
|
423 |
+
- `learning_rate`: 1e-07
|
424 |
+
- `weight_decay`: 0.01
|
425 |
+
- `adam_beta1`: 0.9
|
426 |
+
- `adam_beta2`: 0.999
|
427 |
+
- `adam_epsilon`: 1e-08
|
428 |
+
- `max_grad_norm`: 0.02
|
429 |
+
- `num_train_epochs`: 5
|
430 |
+
- `max_steps`: -1
|
431 |
+
- `lr_scheduler_type`: linear
|
432 |
+
- `lr_scheduler_kwargs`: {}
|
433 |
+
- `warmup_ratio`: 0.0
|
434 |
+
- `warmup_steps`: 100
|
435 |
+
- `log_level`: passive
|
436 |
+
- `log_level_replica`: warning
|
437 |
+
- `log_on_each_node`: True
|
438 |
+
- `logging_nan_inf_filter`: True
|
439 |
+
- `save_safetensors`: True
|
440 |
+
- `save_on_each_node`: False
|
441 |
+
- `save_only_model`: False
|
442 |
+
- `restore_callback_states_from_checkpoint`: False
|
443 |
+
- `no_cuda`: False
|
444 |
+
- `use_cpu`: False
|
445 |
+
- `use_mps_device`: False
|
446 |
+
- `seed`: 42
|
447 |
+
- `data_seed`: None
|
448 |
+
- `jit_mode_eval`: False
|
449 |
+
- `use_ipex`: False
|
450 |
+
- `bf16`: True
|
451 |
+
- `fp16`: False
|
452 |
+
- `fp16_opt_level`: O1
|
453 |
+
- `half_precision_backend`: auto
|
454 |
+
- `bf16_full_eval`: False
|
455 |
+
- `fp16_full_eval`: False
|
456 |
+
- `tf32`: None
|
457 |
+
- `local_rank`: 0
|
458 |
+
- `ddp_backend`: None
|
459 |
+
- `tpu_num_cores`: None
|
460 |
+
- `tpu_metrics_debug`: False
|
461 |
+
- `debug`: []
|
462 |
+
- `dataloader_drop_last`: False
|
463 |
+
- `dataloader_num_workers`: 0
|
464 |
+
- `dataloader_prefetch_factor`: None
|
465 |
+
- `past_index`: -1
|
466 |
+
- `disable_tqdm`: False
|
467 |
+
- `remove_unused_columns`: True
|
468 |
+
- `label_names`: None
|
469 |
+
- `load_best_model_at_end`: False
|
470 |
+
- `ignore_data_skip`: False
|
471 |
+
- `fsdp`: []
|
472 |
+
- `fsdp_min_num_params`: 0
|
473 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
474 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
475 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
476 |
+
- `deepspeed`: None
|
477 |
+
- `label_smoothing_factor`: 0.0
|
478 |
+
- `optim`: adamw_torch
|
479 |
+
- `optim_args`: None
|
480 |
+
- `adafactor`: False
|
481 |
+
- `group_by_length`: False
|
482 |
+
- `length_column_name`: length
|
483 |
+
- `ddp_find_unused_parameters`: None
|
484 |
+
- `ddp_bucket_cap_mb`: None
|
485 |
+
- `ddp_broadcast_buffers`: False
|
486 |
+
- `dataloader_pin_memory`: True
|
487 |
+
- `dataloader_persistent_workers`: False
|
488 |
+
- `skip_memory_metrics`: True
|
489 |
+
- `use_legacy_prediction_loop`: False
|
490 |
+
- `push_to_hub`: False
|
491 |
+
- `resume_from_checkpoint`: None
|
492 |
+
- `hub_model_id`: None
|
493 |
+
- `hub_strategy`: every_save
|
494 |
+
- `hub_private_repo`: False
|
495 |
+
- `hub_always_push`: False
|
496 |
+
- `gradient_checkpointing`: False
|
497 |
+
- `gradient_checkpointing_kwargs`: None
|
498 |
+
- `include_inputs_for_metrics`: False
|
499 |
+
- `eval_do_concat_batches`: True
|
500 |
+
- `fp16_backend`: auto
|
501 |
+
- `push_to_hub_model_id`: None
|
502 |
+
- `push_to_hub_organization`: None
|
503 |
+
- `mp_parameters`:
|
504 |
+
- `auto_find_batch_size`: False
|
505 |
+
- `full_determinism`: False
|
506 |
+
- `torchdynamo`: None
|
507 |
+
- `ray_scope`: last
|
508 |
+
- `ddp_timeout`: 1800
|
509 |
+
- `torch_compile`: False
|
510 |
+
- `torch_compile_backend`: None
|
511 |
+
- `torch_compile_mode`: None
|
512 |
+
- `dispatch_batches`: None
|
513 |
+
- `split_batches`: None
|
514 |
+
- `include_tokens_per_second`: False
|
515 |
+
- `include_num_input_tokens_seen`: False
|
516 |
+
- `neftune_noise_alpha`: None
|
517 |
+
- `optim_target_modules`: None
|
518 |
+
- `batch_eval_metrics`: False
|
519 |
+
- `eval_on_start`: True
|
520 |
+
- `use_liger_kernel`: False
|
521 |
+
- `eval_use_gather_object`: False
|
522 |
+
- `batch_sampler`: batch_sampler
|
523 |
+
- `multi_dataset_batch_sampler`: proportional
|
524 |
+
|
525 |
+
</details>
|
526 |
+
|
527 |
+
### Training Logs
|
528 |
+
<details><summary>Click to expand</summary>
|
529 |
+
|
530 |
+
| Epoch | Step | Training Loss | loss | sts-dev_max_ap |
|
531 |
+
|:------:|:-----:|:-------------:|:------:|:--------------:|
|
532 |
+
| 0 | 0 | - | 0.0764 | 0.9175 |
|
533 |
+
| 0.0040 | 10 | 0.0772 | - | - |
|
534 |
+
| 0.0079 | 20 | 0.0783 | - | - |
|
535 |
+
| 0.0119 | 30 | 0.0775 | - | - |
|
536 |
+
| 0.0159 | 40 | 0.0756 | - | - |
|
537 |
+
| 0.0198 | 50 | 0.075 | - | - |
|
538 |
+
| 0.0238 | 60 | 0.0777 | - | - |
|
539 |
+
| 0.0277 | 70 | 0.0784 | - | - |
|
540 |
+
| 0.0317 | 80 | 0.0721 | - | - |
|
541 |
+
| 0.0357 | 90 | 0.0755 | - | - |
|
542 |
+
| 0.0396 | 100 | 0.0778 | - | - |
|
543 |
+
| 0.0436 | 110 | 0.0735 | - | - |
|
544 |
+
| 0.0476 | 120 | 0.0753 | - | - |
|
545 |
+
| 0.0515 | 130 | 0.0741 | - | - |
|
546 |
+
| 0.0555 | 140 | 0.0791 | - | - |
|
547 |
+
| 0.0595 | 150 | 0.0753 | - | - |
|
548 |
+
| 0.0634 | 160 | 0.0748 | - | - |
|
549 |
+
| 0.0674 | 170 | 0.0709 | - | - |
|
550 |
+
| 0.0713 | 180 | 0.0738 | - | - |
|
551 |
+
| 0.0753 | 190 | 0.0759 | - | - |
|
552 |
+
| 0.0793 | 200 | 0.0703 | - | - |
|
553 |
+
| 0.0832 | 210 | 0.0724 | - | - |
|
554 |
+
| 0.0872 | 220 | 0.0726 | - | - |
|
555 |
+
| 0.0912 | 230 | 0.0734 | - | - |
|
556 |
+
| 0.0951 | 240 | 0.0718 | - | - |
|
557 |
+
| 0.0991 | 250 | 0.0776 | - | - |
|
558 |
+
| 0.1031 | 260 | 0.0757 | - | - |
|
559 |
+
| 0.1070 | 270 | 0.0722 | - | - |
|
560 |
+
| 0.1110 | 280 | 0.0746 | - | - |
|
561 |
+
| 0.1149 | 290 | 0.0718 | - | - |
|
562 |
+
| 0.1189 | 300 | 0.0733 | - | - |
|
563 |
+
| 0.1229 | 310 | 0.0725 | - | - |
|
564 |
+
| 0.1268 | 320 | 0.0724 | - | - |
|
565 |
+
| 0.1308 | 330 | 0.0681 | - | - |
|
566 |
+
| 0.1348 | 340 | 0.0735 | - | - |
|
567 |
+
| 0.1387 | 350 | 0.0716 | - | - |
|
568 |
+
| 0.1427 | 360 | 0.0698 | - | - |
|
569 |
+
| 0.1467 | 370 | 0.072 | - | - |
|
570 |
+
| 0.1506 | 380 | 0.071 | - | - |
|
571 |
+
| 0.1546 | 390 | 0.0713 | - | - |
|
572 |
+
| 0.1585 | 400 | 0.073 | - | - |
|
573 |
+
| 0.1625 | 410 | 0.077 | - | - |
|
574 |
+
| 0.1665 | 420 | 0.072 | - | - |
|
575 |
+
| 0.1704 | 430 | 0.0689 | - | - |
|
576 |
+
| 0.1744 | 440 | 0.0708 | - | - |
|
577 |
+
| 0.1784 | 450 | 0.0687 | - | - |
|
578 |
+
| 0.1823 | 460 | 0.0692 | - | - |
|
579 |
+
| 0.1863 | 470 | 0.0715 | - | - |
|
580 |
+
| 0.1902 | 480 | 0.0707 | - | - |
|
581 |
+
| 0.1942 | 490 | 0.0671 | - | - |
|
582 |
+
| 0.1982 | 500 | 0.0741 | 0.0703 | 0.9245 |
|
583 |
+
| 0.2021 | 510 | 0.0681 | - | - |
|
584 |
+
| 0.2061 | 520 | 0.0749 | - | - |
|
585 |
+
| 0.2101 | 530 | 0.0718 | - | - |
|
586 |
+
| 0.2140 | 540 | 0.0689 | - | - |
|
587 |
+
| 0.2180 | 550 | 0.0733 | - | - |
|
588 |
+
| 0.2220 | 560 | 0.067 | - | - |
|
589 |
+
| 0.2259 | 570 | 0.0685 | - | - |
|
590 |
+
| 0.2299 | 580 | 0.07 | - | - |
|
591 |
+
| 0.2338 | 590 | 0.0683 | - | - |
|
592 |
+
| 0.2378 | 600 | 0.0693 | - | - |
|
593 |
+
| 0.2418 | 610 | 0.0705 | - | - |
|
594 |
+
| 0.2457 | 620 | 0.0707 | - | - |
|
595 |
+
| 0.2497 | 630 | 0.0703 | - | - |
|
596 |
+
| 0.2537 | 640 | 0.068 | - | - |
|
597 |
+
| 0.2576 | 650 | 0.0682 | - | - |
|
598 |
+
| 0.2616 | 660 | 0.0654 | - | - |
|
599 |
+
| 0.2656 | 670 | 0.0682 | - | - |
|
600 |
+
| 0.2695 | 680 | 0.0698 | - | - |
|
601 |
+
| 0.2735 | 690 | 0.0701 | - | - |
|
602 |
+
| 0.2774 | 700 | 0.0674 | - | - |
|
603 |
+
| 0.2814 | 710 | 0.0669 | - | - |
|
604 |
+
| 0.2854 | 720 | 0.0677 | - | - |
|
605 |
+
| 0.2893 | 730 | 0.0674 | - | - |
|
606 |
+
| 0.2933 | 740 | 0.0682 | - | - |
|
607 |
+
| 0.2973 | 750 | 0.0677 | - | - |
|
608 |
+
| 0.3012 | 760 | 0.0661 | - | - |
|
609 |
+
| 0.3052 | 770 | 0.0634 | - | - |
|
610 |
+
| 0.3092 | 780 | 0.0658 | - | - |
|
611 |
+
| 0.3131 | 790 | 0.0687 | - | - |
|
612 |
+
| 0.3171 | 800 | 0.069 | - | - |
|
613 |
+
| 0.3210 | 810 | 0.0665 | - | - |
|
614 |
+
| 0.3250 | 820 | 0.0648 | - | - |
|
615 |
+
| 0.3290 | 830 | 0.0656 | - | - |
|
616 |
+
| 0.3329 | 840 | 0.0672 | - | - |
|
617 |
+
| 0.3369 | 850 | 0.0663 | - | - |
|
618 |
+
| 0.3409 | 860 | 0.0666 | - | - |
|
619 |
+
| 0.3448 | 870 | 0.0644 | - | - |
|
620 |
+
| 0.3488 | 880 | 0.065 | - | - |
|
621 |
+
| 0.3528 | 890 | 0.0666 | - | - |
|
622 |
+
| 0.3567 | 900 | 0.0657 | - | - |
|
623 |
+
| 0.3607 | 910 | 0.0636 | - | - |
|
624 |
+
| 0.3646 | 920 | 0.0681 | - | - |
|
625 |
+
| 0.3686 | 930 | 0.0671 | - | - |
|
626 |
+
| 0.3726 | 940 | 0.0653 | - | - |
|
627 |
+
| 0.3765 | 950 | 0.0643 | - | - |
|
628 |
+
| 0.3805 | 960 | 0.0637 | - | - |
|
629 |
+
| 0.3845 | 970 | 0.066 | - | - |
|
630 |
+
| 0.3884 | 980 | 0.0645 | - | - |
|
631 |
+
| 0.3924 | 990 | 0.0628 | - | - |
|
632 |
+
| 0.3964 | 1000 | 0.0627 | 0.0653 | 0.9325 |
|
633 |
+
| 0.4003 | 1010 | 0.0647 | - | - |
|
634 |
+
| 0.4043 | 1020 | 0.0649 | - | - |
|
635 |
+
| 0.4082 | 1030 | 0.0637 | - | - |
|
636 |
+
| 0.4122 | 1040 | 0.0648 | - | - |
|
637 |
+
| 0.4162 | 1050 | 0.0647 | - | - |
|
638 |
+
| 0.4201 | 1060 | 0.0646 | - | - |
|
639 |
+
| 0.4241 | 1070 | 0.0659 | - | - |
|
640 |
+
| 0.4281 | 1080 | 0.0641 | - | - |
|
641 |
+
| 0.4320 | 1090 | 0.0609 | - | - |
|
642 |
+
| 0.4360 | 1100 | 0.0642 | - | - |
|
643 |
+
| 0.4400 | 1110 | 0.0614 | - | - |
|
644 |
+
| 0.4439 | 1120 | 0.0603 | - | - |
|
645 |
+
| 0.4479 | 1130 | 0.0613 | - | - |
|
646 |
+
| 0.4518 | 1140 | 0.0646 | - | - |
|
647 |
+
| 0.4558 | 1150 | 0.0619 | - | - |
|
648 |
+
| 0.4598 | 1160 | 0.0611 | - | - |
|
649 |
+
| 0.4637 | 1170 | 0.0638 | - | - |
|
650 |
+
| 0.4677 | 1180 | 0.0636 | - | - |
|
651 |
+
| 0.4717 | 1190 | 0.0647 | - | - |
|
652 |
+
| 0.4756 | 1200 | 0.0622 | - | - |
|
653 |
+
| 0.4796 | 1210 | 0.0642 | - | - |
|
654 |
+
| 0.4836 | 1220 | 0.0607 | - | - |
|
655 |
+
| 0.4875 | 1230 | 0.0623 | - | - |
|
656 |
+
| 0.4915 | 1240 | 0.0614 | - | - |
|
657 |
+
| 0.4954 | 1250 | 0.0643 | - | - |
|
658 |
+
| 0.4994 | 1260 | 0.0614 | - | - |
|
659 |
+
| 0.5034 | 1270 | 0.0599 | - | - |
|
660 |
+
| 0.5073 | 1280 | 0.0615 | - | - |
|
661 |
+
| 0.5113 | 1290 | 0.0595 | - | - |
|
662 |
+
| 0.5153 | 1300 | 0.061 | - | - |
|
663 |
+
| 0.5192 | 1310 | 0.0623 | - | - |
|
664 |
+
| 0.5232 | 1320 | 0.0646 | - | - |
|
665 |
+
| 0.5272 | 1330 | 0.0621 | - | - |
|
666 |
+
| 0.5311 | 1340 | 0.0606 | - | - |
|
667 |
+
| 0.5351 | 1350 | 0.0597 | - | - |
|
668 |
+
| 0.5390 | 1360 | 0.0621 | - | - |
|
669 |
+
| 0.5430 | 1370 | 0.0586 | - | - |
|
670 |
+
| 0.5470 | 1380 | 0.0618 | - | - |
|
671 |
+
| 0.5509 | 1390 | 0.0601 | - | - |
|
672 |
+
| 0.5549 | 1400 | 0.0578 | - | - |
|
673 |
+
| 0.5589 | 1410 | 0.0628 | - | - |
|
674 |
+
| 0.5628 | 1420 | 0.0595 | - | - |
|
675 |
+
| 0.5668 | 1430 | 0.0576 | - | - |
|
676 |
+
| 0.5707 | 1440 | 0.0606 | - | - |
|
677 |
+
| 0.5747 | 1450 | 0.0618 | - | - |
|
678 |
+
| 0.5787 | 1460 | 0.0591 | - | - |
|
679 |
+
| 0.5826 | 1470 | 0.0598 | - | - |
|
680 |
+
| 0.5866 | 1480 | 0.0611 | - | - |
|
681 |
+
| 0.5906 | 1490 | 0.0594 | - | - |
|
682 |
+
| 0.5945 | 1500 | 0.0616 | 0.0619 | 0.9393 |
|
683 |
+
| 0.5985 | 1510 | 0.0592 | - | - |
|
684 |
+
| 0.6025 | 1520 | 0.0597 | - | - |
|
685 |
+
| 0.6064 | 1530 | 0.0619 | - | - |
|
686 |
+
| 0.6104 | 1540 | 0.0595 | - | - |
|
687 |
+
| 0.6143 | 1550 | 0.0598 | - | - |
|
688 |
+
| 0.6183 | 1560 | 0.0609 | - | - |
|
689 |
+
| 0.6223 | 1570 | 0.059 | - | - |
|
690 |
+
| 0.6262 | 1580 | 0.0601 | - | - |
|
691 |
+
| 0.6302 | 1590 | 0.0595 | - | - |
|
692 |
+
| 0.6342 | 1600 | 0.059 | - | - |
|
693 |
+
| 0.6381 | 1610 | 0.0606 | - | - |
|
694 |
+
| 0.6421 | 1620 | 0.0591 | - | - |
|
695 |
+
| 0.6461 | 1630 | 0.0617 | - | - |
|
696 |
+
| 0.6500 | 1640 | 0.0592 | - | - |
|
697 |
+
| 0.6540 | 1650 | 0.0588 | - | - |
|
698 |
+
| 0.6579 | 1660 | 0.0587 | - | - |
|
699 |
+
| 0.6619 | 1670 | 0.0585 | - | - |
|
700 |
+
| 0.6659 | 1680 | 0.0558 | - | - |
|
701 |
+
| 0.6698 | 1690 | 0.057 | - | - |
|
702 |
+
| 0.6738 | 1700 | 0.0598 | - | - |
|
703 |
+
| 0.6778 | 1710 | 0.0567 | - | - |
|
704 |
+
| 0.6817 | 1720 | 0.0555 | - | - |
|
705 |
+
| 0.6857 | 1730 | 0.0604 | - | - |
|
706 |
+
| 0.6897 | 1740 | 0.0558 | - | - |
|
707 |
+
| 0.6936 | 1750 | 0.0572 | - | - |
|
708 |
+
| 0.6976 | 1760 | 0.0577 | - | - |
|
709 |
+
| 0.7015 | 1770 | 0.0587 | - | - |
|
710 |
+
| 0.7055 | 1780 | 0.0589 | - | - |
|
711 |
+
| 0.7095 | 1790 | 0.0598 | - | - |
|
712 |
+
| 0.7134 | 1800 | 0.0583 | - | - |
|
713 |
+
| 0.7174 | 1810 | 0.058 | - | - |
|
714 |
+
| 0.7214 | 1820 | 0.0564 | - | - |
|
715 |
+
| 0.7253 | 1830 | 0.0589 | - | - |
|
716 |
+
| 0.7293 | 1840 | 0.0557 | - | - |
|
717 |
+
| 0.7333 | 1850 | 0.0586 | - | - |
|
718 |
+
| 0.7372 | 1860 | 0.0601 | - | - |
|
719 |
+
| 0.7412 | 1870 | 0.0556 | - | - |
|
720 |
+
| 0.7451 | 1880 | 0.0572 | - | - |
|
721 |
+
| 0.7491 | 1890 | 0.0574 | - | - |
|
722 |
+
| 0.7531 | 1900 | 0.0583 | - | - |
|
723 |
+
| 0.7570 | 1910 | 0.0573 | - | - |
|
724 |
+
| 0.7610 | 1920 | 0.0555 | - | - |
|
725 |
+
| 0.7650 | 1930 | 0.0561 | - | - |
|
726 |
+
| 0.7689 | 1940 | 0.0579 | - | - |
|
727 |
+
| 0.7729 | 1950 | 0.0557 | - | - |
|
728 |
+
| 0.7769 | 1960 | 0.0558 | - | - |
|
729 |
+
| 0.7808 | 1970 | 0.0589 | - | - |
|
730 |
+
| 0.7848 | 1980 | 0.0572 | - | - |
|
731 |
+
| 0.7887 | 1990 | 0.0572 | - | - |
|
732 |
+
| 0.7927 | 2000 | 0.0549 | 0.0592 | 0.9444 |
|
733 |
+
| 0.7967 | 2010 | 0.0548 | - | - |
|
734 |
+
| 0.8006 | 2020 | 0.0569 | - | - |
|
735 |
+
| 0.8046 | 2030 | 0.058 | - | - |
|
736 |
+
| 0.8086 | 2040 | 0.0581 | - | - |
|
737 |
+
| 0.8125 | 2050 | 0.0585 | - | - |
|
738 |
+
| 0.8165 | 2060 | 0.0542 | - | - |
|
739 |
+
| 0.8205 | 2070 | 0.0558 | - | - |
|
740 |
+
| 0.8244 | 2080 | 0.0569 | - | - |
|
741 |
+
| 0.8284 | 2090 | 0.0564 | - | - |
|
742 |
+
| 0.8323 | 2100 | 0.0552 | - | - |
|
743 |
+
| 0.8363 | 2110 | 0.0559 | - | - |
|
744 |
+
| 0.8403 | 2120 | 0.0534 | - | - |
|
745 |
+
| 0.8442 | 2130 | 0.0543 | - | - |
|
746 |
+
| 0.8482 | 2140 | 0.0573 | - | - |
|
747 |
+
| 0.8522 | 2150 | 0.0546 | - | - |
|
748 |
+
| 0.8561 | 2160 | 0.0554 | - | - |
|
749 |
+
| 0.8601 | 2170 | 0.0568 | - | - |
|
750 |
+
| 0.8641 | 2180 | 0.0544 | - | - |
|
751 |
+
| 0.8680 | 2190 | 0.0547 | - | - |
|
752 |
+
| 0.8720 | 2200 | 0.0549 | - | - |
|
753 |
+
| 0.8759 | 2210 | 0.0544 | - | - |
|
754 |
+
| 0.8799 | 2220 | 0.058 | - | - |
|
755 |
+
| 0.8839 | 2230 | 0.0557 | - | - |
|
756 |
+
| 0.8878 | 2240 | 0.0551 | - | - |
|
757 |
+
| 0.8918 | 2250 | 0.0558 | - | - |
|
758 |
+
| 0.8958 | 2260 | 0.0554 | - | - |
|
759 |
+
| 0.8997 | 2270 | 0.053 | - | - |
|
760 |
+
| 0.9037 | 2280 | 0.0552 | - | - |
|
761 |
+
| 0.9076 | 2290 | 0.0549 | - | - |
|
762 |
+
| 0.9116 | 2300 | 0.0533 | - | - |
|
763 |
+
| 0.9156 | 2310 | 0.0543 | - | - |
|
764 |
+
| 0.9195 | 2320 | 0.0531 | - | - |
|
765 |
+
| 0.9235 | 2330 | 0.0553 | - | - |
|
766 |
+
| 0.9275 | 2340 | 0.0542 | - | - |
|
767 |
+
| 0.9314 | 2350 | 0.0537 | - | - |
|
768 |
+
| 0.9354 | 2360 | 0.0536 | - | - |
|
769 |
+
| 0.9394 | 2370 | 0.055 | - | - |
|
770 |
+
| 0.9433 | 2380 | 0.0551 | - | - |
|
771 |
+
| 0.9473 | 2390 | 0.0532 | - | - |
|
772 |
+
| 0.9512 | 2400 | 0.0556 | - | - |
|
773 |
+
| 0.9552 | 2410 | 0.0548 | - | - |
|
774 |
+
| 0.9592 | 2420 | 0.0533 | - | - |
|
775 |
+
| 0.9631 | 2430 | 0.0536 | - | - |
|
776 |
+
| 0.9671 | 2440 | 0.0549 | - | - |
|
777 |
+
| 0.9711 | 2450 | 0.0548 | - | - |
|
778 |
+
| 0.9750 | 2460 | 0.0557 | - | - |
|
779 |
+
| 0.9790 | 2470 | 0.055 | - | - |
|
780 |
+
| 0.9830 | 2480 | 0.0535 | - | - |
|
781 |
+
| 0.9869 | 2490 | 0.0564 | - | - |
|
782 |
+
| 0.9909 | 2500 | 0.0526 | 0.0572 | 0.9482 |
|
783 |
+
| 0.9948 | 2510 | 0.0547 | - | - |
|
784 |
+
| 0.9988 | 2520 | 0.054 | - | - |
|
785 |
+
| 1.0028 | 2530 | 0.0527 | - | - |
|
786 |
+
| 1.0067 | 2540 | 0.0522 | - | - |
|
787 |
+
| 1.0107 | 2550 | 0.0535 | - | - |
|
788 |
+
| 1.0147 | 2560 | 0.0557 | - | - |
|
789 |
+
| 1.0186 | 2570 | 0.052 | - | - |
|
790 |
+
| 1.0226 | 2580 | 0.055 | - | - |
|
791 |
+
| 1.0266 | 2590 | 0.0542 | - | - |
|
792 |
+
| 1.0305 | 2600 | 0.0539 | - | - |
|
793 |
+
| 1.0345 | 2610 | 0.0523 | - | - |
|
794 |
+
| 1.0384 | 2620 | 0.0507 | - | - |
|
795 |
+
| 1.0424 | 2630 | 0.0517 | - | - |
|
796 |
+
| 1.0464 | 2640 | 0.0543 | - | - |
|
797 |
+
| 1.0503 | 2650 | 0.0543 | - | - |
|
798 |
+
| 1.0543 | 2660 | 0.054 | - | - |
|
799 |
+
| 1.0583 | 2670 | 0.0536 | - | - |
|
800 |
+
| 1.0622 | 2680 | 0.0531 | - | - |
|
801 |
+
| 1.0662 | 2690 | 0.0537 | - | - |
|
802 |
+
| 1.0702 | 2700 | 0.0521 | - | - |
|
803 |
+
| 1.0741 | 2710 | 0.054 | - | - |
|
804 |
+
| 1.0781 | 2720 | 0.0513 | - | - |
|
805 |
+
| 1.0820 | 2730 | 0.0496 | - | - |
|
806 |
+
| 1.0860 | 2740 | 0.0519 | - | - |
|
807 |
+
| 1.0900 | 2750 | 0.0529 | - | - |
|
808 |
+
| 1.0939 | 2760 | 0.0542 | - | - |
|
809 |
+
| 1.0979 | 2770 | 0.0526 | - | - |
|
810 |
+
| 1.1019 | 2780 | 0.051 | - | - |
|
811 |
+
| 1.1058 | 2790 | 0.0531 | - | - |
|
812 |
+
| 1.1098 | 2800 | 0.0539 | - | - |
|
813 |
+
| 1.1138 | 2810 | 0.0521 | - | - |
|
814 |
+
| 1.1177 | 2820 | 0.0539 | - | - |
|
815 |
+
| 1.1217 | 2830 | 0.0505 | - | - |
|
816 |
+
| 1.1256 | 2840 | 0.0513 | - | - |
|
817 |
+
| 1.1296 | 2850 | 0.0521 | - | - |
|
818 |
+
| 1.1336 | 2860 | 0.0537 | - | - |
|
819 |
+
| 1.1375 | 2870 | 0.0514 | - | - |
|
820 |
+
| 1.1415 | 2880 | 0.0511 | - | - |
|
821 |
+
| 1.1455 | 2890 | 0.0495 | - | - |
|
822 |
+
| 1.1494 | 2900 | 0.0505 | - | - |
|
823 |
+
| 1.1534 | 2910 | 0.0517 | - | - |
|
824 |
+
| 1.1574 | 2920 | 0.0509 | - | - |
|
825 |
+
| 1.1613 | 2930 | 0.0507 | - | - |
|
826 |
+
| 1.1653 | 2940 | 0.0535 | - | - |
|
827 |
+
| 1.1692 | 2950 | 0.0511 | - | - |
|
828 |
+
| 1.1732 | 2960 | 0.0507 | - | - |
|
829 |
+
| 1.1772 | 2970 | 0.052 | - | - |
|
830 |
+
| 1.1811 | 2980 | 0.0494 | - | - |
|
831 |
+
| 1.1851 | 2990 | 0.0524 | - | - |
|
832 |
+
| 1.1891 | 3000 | 0.052 | 0.0555 | 0.9512 |
|
833 |
+
| 1.1930 | 3010 | 0.0536 | - | - |
|
834 |
+
| 1.1970 | 3020 | 0.0502 | - | - |
|
835 |
+
| 1.2010 | 3030 | 0.0504 | - | - |
|
836 |
+
| 1.2049 | 3040 | 0.0532 | - | - |
|
837 |
+
| 1.2089 | 3050 | 0.0529 | - | - |
|
838 |
+
| 1.2128 | 3060 | 0.0514 | - | - |
|
839 |
+
| 1.2168 | 3070 | 0.0504 | - | - |
|
840 |
+
| 1.2208 | 3080 | 0.0501 | - | - |
|
841 |
+
| 1.2247 | 3090 | 0.0493 | - | - |
|
842 |
+
| 1.2287 | 3100 | 0.0507 | - | - |
|
843 |
+
| 1.2327 | 3110 | 0.0501 | - | - |
|
844 |
+
| 1.2366 | 3120 | 0.0502 | - | - |
|
845 |
+
| 1.2406 | 3130 | 0.0491 | - | - |
|
846 |
+
| 1.2446 | 3140 | 0.0495 | - | - |
|
847 |
+
| 1.2485 | 3150 | 0.051 | - | - |
|
848 |
+
| 1.2525 | 3160 | 0.0495 | - | - |
|
849 |
+
| 1.2564 | 3170 | 0.0534 | - | - |
|
850 |
+
| 1.2604 | 3180 | 0.0483 | - | - |
|
851 |
+
| 1.2644 | 3190 | 0.049 | - | - |
|
852 |
+
| 1.2683 | 3200 | 0.0532 | - | - |
|
853 |
+
| 1.2723 | 3210 | 0.0481 | - | - |
|
854 |
+
| 1.2763 | 3220 | 0.0496 | - | - |
|
855 |
+
| 1.2802 | 3230 | 0.0504 | - | - |
|
856 |
+
| 1.2842 | 3240 | 0.0477 | - | - |
|
857 |
+
| 1.2881 | 3250 | 0.0483 | - | - |
|
858 |
+
| 1.2921 | 3260 | 0.0493 | - | - |
|
859 |
+
| 1.2961 | 3270 | 0.0491 | - | - |
|
860 |
+
| 1.3000 | 3280 | 0.0489 | - | - |
|
861 |
+
| 1.3040 | 3290 | 0.0493 | - | - |
|
862 |
+
| 1.3080 | 3300 | 0.0507 | - | - |
|
863 |
+
| 1.3119 | 3310 | 0.0482 | - | - |
|
864 |
+
| 1.3159 | 3320 | 0.0506 | - | - |
|
865 |
+
| 1.3199 | 3330 | 0.0486 | - | - |
|
866 |
+
| 1.3238 | 3340 | 0.0487 | - | - |
|
867 |
+
| 1.3278 | 3350 | 0.0482 | - | - |
|
868 |
+
| 1.3317 | 3360 | 0.0492 | - | - |
|
869 |
+
| 1.3357 | 3370 | 0.049 | - | - |
|
870 |
+
| 1.3397 | 3380 | 0.0485 | - | - |
|
871 |
+
| 1.3436 | 3390 | 0.0501 | - | - |
|
872 |
+
| 1.3476 | 3400 | 0.0505 | - | - |
|
873 |
+
| 1.3516 | 3410 | 0.0508 | - | - |
|
874 |
+
| 1.3555 | 3420 | 0.0481 | - | - |
|
875 |
+
| 1.3595 | 3430 | 0.049 | - | - |
|
876 |
+
| 1.3635 | 3440 | 0.0495 | - | - |
|
877 |
+
| 1.3674 | 3450 | 0.0507 | - | - |
|
878 |
+
| 1.3714 | 3460 | 0.0478 | - | - |
|
879 |
+
| 1.3753 | 3470 | 0.0522 | - | - |
|
880 |
+
| 1.3793 | 3480 | 0.0505 | - | - |
|
881 |
+
| 1.3833 | 3490 | 0.0489 | - | - |
|
882 |
+
| 1.3872 | 3500 | 0.0504 | 0.0541 | 0.9537 |
|
883 |
+
| 1.3912 | 3510 | 0.0492 | - | - |
|
884 |
+
| 1.3952 | 3520 | 0.0469 | - | - |
|
885 |
+
| 1.3991 | 3530 | 0.0495 | - | - |
|
886 |
+
| 1.4031 | 3540 | 0.0486 | - | - |
|
887 |
+
| 1.4071 | 3550 | 0.0506 | - | - |
|
888 |
+
| 1.4110 | 3560 | 0.0506 | - | - |
|
889 |
+
| 1.4150 | 3570 | 0.0475 | - | - |
|
890 |
+
| 1.4189 | 3580 | 0.0483 | - | - |
|
891 |
+
| 1.4229 | 3590 | 0.0471 | - | - |
|
892 |
+
| 1.4269 | 3600 | 0.0477 | - | - |
|
893 |
+
| 1.4308 | 3610 | 0.0494 | - | - |
|
894 |
+
| 1.4348 | 3620 | 0.0481 | - | - |
|
895 |
+
| 1.4388 | 3630 | 0.0484 | - | - |
|
896 |
+
| 1.4427 | 3640 | 0.0505 | - | - |
|
897 |
+
| 1.4467 | 3650 | 0.0498 | - | - |
|
898 |
+
| 1.4507 | 3660 | 0.0482 | - | - |
|
899 |
+
| 1.4546 | 3670 | 0.0488 | - | - |
|
900 |
+
| 1.4586 | 3680 | 0.0458 | - | - |
|
901 |
+
| 1.4625 | 3690 | 0.0479 | - | - |
|
902 |
+
| 1.4665 | 3700 | 0.0474 | - | - |
|
903 |
+
| 1.4705 | 3710 | 0.0471 | - | - |
|
904 |
+
| 1.4744 | 3720 | 0.0498 | - | - |
|
905 |
+
| 1.4784 | 3730 | 0.0495 | - | - |
|
906 |
+
| 1.4824 | 3740 | 0.0505 | - | - |
|
907 |
+
| 1.4863 | 3750 | 0.0487 | - | - |
|
908 |
+
| 1.4903 | 3760 | 0.0485 | - | - |
|
909 |
+
| 1.4943 | 3770 | 0.0479 | - | - |
|
910 |
+
| 1.4982 | 3780 | 0.0475 | - | - |
|
911 |
+
| 1.5022 | 3790 | 0.0462 | - | - |
|
912 |
+
| 1.5061 | 3800 | 0.0487 | - | - |
|
913 |
+
| 1.5101 | 3810 | 0.0476 | - | - |
|
914 |
+
| 1.5141 | 3820 | 0.0485 | - | - |
|
915 |
+
| 1.5180 | 3830 | 0.0489 | - | - |
|
916 |
+
| 1.5220 | 3840 | 0.0475 | - | - |
|
917 |
+
| 1.5260 | 3850 | 0.0484 | - | - |
|
918 |
+
| 1.5299 | 3860 | 0.0465 | - | - |
|
919 |
+
| 1.5339 | 3870 | 0.0491 | - | - |
|
920 |
+
| 1.5379 | 3880 | 0.0477 | - | - |
|
921 |
+
| 1.5418 | 3890 | 0.0475 | - | - |
|
922 |
+
| 1.5458 | 3900 | 0.0489 | - | - |
|
923 |
+
| 1.5497 | 3910 | 0.0459 | - | - |
|
924 |
+
| 1.5537 | 3920 | 0.0488 | - | - |
|
925 |
+
| 1.5577 | 3930 | 0.0475 | - | - |
|
926 |
+
| 1.5616 | 3940 | 0.049 | - | - |
|
927 |
+
| 1.5656 | 3950 | 0.0469 | - | - |
|
928 |
+
| 1.5696 | 3960 | 0.0493 | - | - |
|
929 |
+
| 1.5735 | 3970 | 0.0481 | - | - |
|
930 |
+
| 1.5775 | 3980 | 0.0478 | - | - |
|
931 |
+
| 1.5815 | 3990 | 0.0456 | - | - |
|
932 |
+
| 1.5854 | 4000 | 0.047 | 0.0528 | 0.9556 |
|
933 |
+
| 1.5894 | 4010 | 0.0481 | - | - |
|
934 |
+
| 1.5933 | 4020 | 0.0468 | - | - |
|
935 |
+
| 1.5973 | 4030 | 0.0467 | - | - |
|
936 |
+
| 1.6013 | 4040 | 0.0448 | - | - |
|
937 |
+
| 1.6052 | 4050 | 0.0491 | - | - |
|
938 |
+
| 1.6092 | 4060 | 0.0476 | - | - |
|
939 |
+
| 1.6132 | 4070 | 0.0459 | - | - |
|
940 |
+
| 1.6171 | 4080 | 0.0456 | - | - |
|
941 |
+
| 1.6211 | 4090 | 0.0476 | - | - |
|
942 |
+
| 1.6250 | 4100 | 0.0443 | - | - |
|
943 |
+
| 1.6290 | 4110 | 0.0477 | - | - |
|
944 |
+
| 1.6330 | 4120 | 0.0476 | - | - |
|
945 |
+
| 1.6369 | 4130 | 0.0466 | - | - |
|
946 |
+
| 1.6409 | 4140 | 0.0457 | - | - |
|
947 |
+
| 1.6449 | 4150 | 0.0468 | - | - |
|
948 |
+
| 1.6488 | 4160 | 0.0462 | - | - |
|
949 |
+
| 1.6528 | 4170 | 0.0476 | - | - |
|
950 |
+
| 1.6568 | 4180 | 0.0464 | - | - |
|
951 |
+
| 1.6607 | 4190 | 0.0467 | - | - |
|
952 |
+
| 1.6647 | 4200 | 0.0455 | - | - |
|
953 |
+
| 1.6686 | 4210 | 0.0455 | - | - |
|
954 |
+
| 1.6726 | 4220 | 0.0474 | - | - |
|
955 |
+
| 1.6766 | 4230 | 0.0469 | - | - |
|
956 |
+
| 1.6805 | 4240 | 0.0453 | - | - |
|
957 |
+
| 1.6845 | 4250 | 0.0464 | - | - |
|
958 |
+
| 1.6885 | 4260 | 0.0448 | - | - |
|
959 |
+
| 1.6924 | 4270 | 0.0448 | - | - |
|
960 |
+
| 1.6964 | 4280 | 0.0461 | - | - |
|
961 |
+
| 1.7004 | 4290 | 0.0444 | - | - |
|
962 |
+
| 1.7043 | 4300 | 0.045 | - | - |
|
963 |
+
| 1.7083 | 4310 | 0.047 | - | - |
|
964 |
+
| 1.7122 | 4320 | 0.0473 | - | - |
|
965 |
+
| 1.7162 | 4330 | 0.0453 | - | - |
|
966 |
+
| 1.7202 | 4340 | 0.0461 | - | - |
|
967 |
+
| 1.7241 | 4350 | 0.0464 | - | - |
|
968 |
+
| 1.7281 | 4360 | 0.0474 | - | - |
|
969 |
+
| 1.7321 | 4370 | 0.0444 | - | - |
|
970 |
+
| 1.7360 | 4380 | 0.0465 | - | - |
|
971 |
+
| 1.7400 | 4390 | 0.0454 | - | - |
|
972 |
+
| 1.7440 | 4400 | 0.045 | - | - |
|
973 |
+
| 1.7479 | 4410 | 0.0444 | - | - |
|
974 |
+
| 1.7519 | 4420 | 0.0451 | - | - |
|
975 |
+
| 1.7558 | 4430 | 0.0454 | - | - |
|
976 |
+
| 1.7598 | 4440 | 0.0471 | - | - |
|
977 |
+
| 1.7638 | 4450 | 0.0467 | - | - |
|
978 |
+
| 1.7677 | 4460 | 0.0466 | - | - |
|
979 |
+
| 1.7717 | 4470 | 0.0452 | - | - |
|
980 |
+
| 1.7757 | 4480 | 0.0466 | - | - |
|
981 |
+
| 1.7796 | 4490 | 0.046 | - | - |
|
982 |
+
| 1.7836 | 4500 | 0.0462 | 0.0518 | 0.9570 |
|
983 |
+
| 1.7876 | 4510 | 0.0459 | - | - |
|
984 |
+
| 1.7915 | 4520 | 0.0455 | - | - |
|
985 |
+
| 1.7955 | 4530 | 0.0456 | - | - |
|
986 |
+
| 1.7994 | 4540 | 0.0476 | - | - |
|
987 |
+
| 1.8034 | 4550 | 0.0465 | - | - |
|
988 |
+
| 1.8074 | 4560 | 0.0447 | - | - |
|
989 |
+
| 1.8113 | 4570 | 0.0438 | - | - |
|
990 |
+
| 1.8153 | 4580 | 0.0463 | - | - |
|
991 |
+
| 1.8193 | 4590 | 0.0452 | - | - |
|
992 |
+
| 1.8232 | 4600 | 0.0454 | - | - |
|
993 |
+
| 1.8272 | 4610 | 0.0459 | - | - |
|
994 |
+
| 1.8312 | 4620 | 0.044 | - | - |
|
995 |
+
| 1.8351 | 4630 | 0.0445 | - | - |
|
996 |
+
| 1.8391 | 4640 | 0.0435 | - | - |
|
997 |
+
| 1.8430 | 4650 | 0.0435 | - | - |
|
998 |
+
| 1.8470 | 4660 | 0.0442 | - | - |
|
999 |
+
| 1.8510 | 4670 | 0.0424 | - | - |
|
1000 |
+
| 1.8549 | 4680 | 0.0438 | - | - |
|
1001 |
+
| 1.8589 | 4690 | 0.0451 | - | - |
|
1002 |
+
| 1.8629 | 4700 | 0.0451 | - | - |
|
1003 |
+
| 1.8668 | 4710 | 0.0455 | - | - |
|
1004 |
+
| 1.8708 | 4720 | 0.0441 | - | - |
|
1005 |
+
| 1.8748 | 4730 | 0.0432 | - | - |
|
1006 |
+
| 1.8787 | 4740 | 0.0445 | - | - |
|
1007 |
+
| 1.8827 | 4750 | 0.0482 | - | - |
|
1008 |
+
| 1.8866 | 4760 | 0.045 | - | - |
|
1009 |
+
| 1.8906 | 4770 | 0.0443 | - | - |
|
1010 |
+
| 1.8946 | 4780 | 0.0451 | - | - |
|
1011 |
+
| 1.8985 | 4790 | 0.0446 | - | - |
|
1012 |
+
| 1.9025 | 4800 | 0.0432 | - | - |
|
1013 |
+
| 1.9065 | 4810 | 0.0432 | - | - |
|
1014 |
+
| 1.9104 | 4820 | 0.0465 | - | - |
|
1015 |
+
| 1.9144 | 4830 | 0.0462 | - | - |
|
1016 |
+
| 1.9184 | 4840 | 0.0443 | - | - |
|
1017 |
+
| 1.9223 | 4850 | 0.0447 | - | - |
|
1018 |
+
| 1.9263 | 4860 | 0.0459 | - | - |
|
1019 |
+
| 1.9302 | 4870 | 0.043 | - | - |
|
1020 |
+
| 1.9342 | 4880 | 0.0456 | - | - |
|
1021 |
+
| 1.9382 | 4890 | 0.0444 | - | - |
|
1022 |
+
| 1.9421 | 4900 | 0.0455 | - | - |
|
1023 |
+
| 1.9461 | 4910 | 0.0427 | - | - |
|
1024 |
+
| 1.9501 | 4920 | 0.0461 | - | - |
|
1025 |
+
| 1.9540 | 4930 | 0.0454 | - | - |
|
1026 |
+
| 1.9580 | 4940 | 0.0447 | - | - |
|
1027 |
+
| 1.9620 | 4950 | 0.0434 | - | - |
|
1028 |
+
| 1.9659 | 4960 | 0.0444 | - | - |
|
1029 |
+
| 1.9699 | 4970 | 0.0451 | - | - |
|
1030 |
+
| 1.9738 | 4980 | 0.044 | - | - |
|
1031 |
+
| 1.9778 | 4990 | 0.0444 | - | - |
|
1032 |
+
| 1.9818 | 5000 | 0.0439 | 0.0508 | 0.9581 |
|
1033 |
+
| 1.9857 | 5010 | 0.0427 | - | - |
|
1034 |
+
| 1.9897 | 5020 | 0.0439 | - | - |
|
1035 |
+
| 1.9937 | 5030 | 0.0427 | - | - |
|
1036 |
+
| 1.9976 | 5040 | 0.0435 | - | - |
|
1037 |
+
| 2.0016 | 5050 | 0.0445 | - | - |
|
1038 |
+
| 2.0055 | 5060 | 0.0433 | - | - |
|
1039 |
+
| 2.0095 | 5070 | 0.0433 | - | - |
|
1040 |
+
| 2.0135 | 5080 | 0.0435 | - | - |
|
1041 |
+
| 2.0174 | 5090 | 0.0438 | - | - |
|
1042 |
+
| 2.0214 | 5100 | 0.0431 | - | - |
|
1043 |
+
| 2.0254 | 5110 | 0.0422 | - | - |
|
1044 |
+
| 2.0293 | 5120 | 0.0436 | - | - |
|
1045 |
+
| 2.0333 | 5130 | 0.0455 | - | - |
|
1046 |
+
| 2.0373 | 5140 | 0.044 | - | - |
|
1047 |
+
| 2.0412 | 5150 | 0.0423 | - | - |
|
1048 |
+
| 2.0452 | 5160 | 0.045 | - | - |
|
1049 |
+
| 2.0491 | 5170 | 0.0422 | - | - |
|
1050 |
+
| 2.0531 | 5180 | 0.0435 | - | - |
|
1051 |
+
| 2.0571 | 5190 | 0.0419 | - | - |
|
1052 |
+
| 2.0610 | 5200 | 0.0427 | - | - |
|
1053 |
+
| 2.0650 | 5210 | 0.0447 | - | - |
|
1054 |
+
| 2.0690 | 5220 | 0.0443 | - | - |
|
1055 |
+
| 2.0729 | 5230 | 0.0429 | - | - |
|
1056 |
+
| 2.0769 | 5240 | 0.0436 | - | - |
|
1057 |
+
| 2.0809 | 5250 | 0.0436 | - | - |
|
1058 |
+
| 2.0848 | 5260 | 0.0439 | - | - |
|
1059 |
+
| 2.0888 | 5270 | 0.0433 | - | - |
|
1060 |
+
| 2.0927 | 5280 | 0.0434 | - | - |
|
1061 |
+
| 2.0967 | 5290 | 0.0428 | - | - |
|
1062 |
+
| 2.1007 | 5300 | 0.0431 | - | - |
|
1063 |
+
| 2.1046 | 5310 | 0.0441 | - | - |
|
1064 |
+
| 2.1086 | 5320 | 0.0443 | - | - |
|
1065 |
+
| 2.1126 | 5330 | 0.0442 | - | - |
|
1066 |
+
| 2.1165 | 5340 | 0.044 | - | - |
|
1067 |
+
| 2.1205 | 5350 | 0.0431 | - | - |
|
1068 |
+
| 2.1245 | 5360 | 0.0432 | - | - |
|
1069 |
+
| 2.1284 | 5370 | 0.0421 | - | - |
|
1070 |
+
| 2.1324 | 5380 | 0.0439 | - | - |
|
1071 |
+
| 2.1363 | 5390 | 0.0436 | - | - |
|
1072 |
+
| 2.1403 | 5400 | 0.0428 | - | - |
|
1073 |
+
| 2.1443 | 5410 | 0.044 | - | - |
|
1074 |
+
| 2.1482 | 5420 | 0.0428 | - | - |
|
1075 |
+
| 2.1522 | 5430 | 0.0428 | - | - |
|
1076 |
+
| 2.1562 | 5440 | 0.0418 | - | - |
|
1077 |
+
| 2.1601 | 5450 | 0.0439 | - | - |
|
1078 |
+
| 2.1641 | 5460 | 0.0415 | - | - |
|
1079 |
+
| 2.1681 | 5470 | 0.0415 | - | - |
|
1080 |
+
| 2.1720 | 5480 | 0.0418 | - | - |
|
1081 |
+
| 2.1760 | 5490 | 0.042 | - | - |
|
1082 |
+
| 2.1799 | 5500 | 0.0418 | 0.0500 | 0.9591 |
|
1083 |
+
| 2.1839 | 5510 | 0.0434 | - | - |
|
1084 |
+
| 2.1879 | 5520 | 0.0424 | - | - |
|
1085 |
+
| 2.1918 | 5530 | 0.0425 | - | - |
|
1086 |
+
| 2.1958 | 5540 | 0.0427 | - | - |
|
1087 |
+
| 2.1998 | 5550 | 0.0418 | - | - |
|
1088 |
+
| 2.2037 | 5560 | 0.04 | - | - |
|
1089 |
+
| 2.2077 | 5570 | 0.0426 | - | - |
|
1090 |
+
| 2.2117 | 5580 | 0.0413 | - | - |
|
1091 |
+
| 2.2156 | 5590 | 0.0429 | - | - |
|
1092 |
+
| 2.2196 | 5600 | 0.0428 | - | - |
|
1093 |
+
| 2.2235 | 5610 | 0.044 | - | - |
|
1094 |
+
| 2.2275 | 5620 | 0.0423 | - | - |
|
1095 |
+
| 2.2315 | 5630 | 0.0398 | - | - |
|
1096 |
+
| 2.2354 | 5640 | 0.0427 | - | - |
|
1097 |
+
| 2.2394 | 5650 | 0.0419 | - | - |
|
1098 |
+
| 2.2434 | 5660 | 0.0424 | - | - |
|
1099 |
+
| 2.2473 | 5670 | 0.0422 | - | - |
|
1100 |
+
| 2.2513 | 5680 | 0.0426 | - | - |
|
1101 |
+
| 2.2553 | 5690 | 0.0434 | - | - |
|
1102 |
+
| 2.2592 | 5700 | 0.044 | - | - |
|
1103 |
+
| 2.2632 | 5710 | 0.0427 | - | - |
|
1104 |
+
| 2.2671 | 5720 | 0.0431 | - | - |
|
1105 |
+
| 2.2711 | 5730 | 0.0416 | - | - |
|
1106 |
+
| 2.2751 | 5740 | 0.0428 | - | - |
|
1107 |
+
| 2.2790 | 5750 | 0.0418 | - | - |
|
1108 |
+
| 2.2830 | 5760 | 0.0418 | - | - |
|
1109 |
+
| 2.2870 | 5770 | 0.0421 | - | - |
|
1110 |
+
| 2.2909 | 5780 | 0.041 | - | - |
|
1111 |
+
| 2.2949 | 5790 | 0.0419 | - | - |
|
1112 |
+
| 2.2989 | 5800 | 0.0422 | - | - |
|
1113 |
+
| 2.3028 | 5810 | 0.0428 | - | - |
|
1114 |
+
| 2.3068 | 5820 | 0.0432 | - | - |
|
1115 |
+
| 2.3107 | 5830 | 0.043 | - | - |
|
1116 |
+
| 2.3147 | 5840 | 0.0424 | - | - |
|
1117 |
+
| 2.3187 | 5850 | 0.0396 | - | - |
|
1118 |
+
| 2.3226 | 5860 | 0.0433 | - | - |
|
1119 |
+
| 2.3266 | 5870 | 0.0413 | - | - |
|
1120 |
+
| 2.3306 | 5880 | 0.0436 | - | - |
|
1121 |
+
| 2.3345 | 5890 | 0.0399 | - | - |
|
1122 |
+
| 2.3385 | 5900 | 0.0426 | - | - |
|
1123 |
+
| 2.3424 | 5910 | 0.0405 | - | - |
|
1124 |
+
| 2.3464 | 5920 | 0.0423 | - | - |
|
1125 |
+
| 2.3504 | 5930 | 0.0409 | - | - |
|
1126 |
+
| 2.3543 | 5940 | 0.0412 | - | - |
|
1127 |
+
| 2.3583 | 5950 | 0.0401 | - | - |
|
1128 |
+
| 2.3623 | 5960 | 0.042 | - | - |
|
1129 |
+
| 2.3662 | 5970 | 0.0397 | - | - |
|
1130 |
+
| 2.3702 | 5980 | 0.0422 | - | - |
|
1131 |
+
| 2.3742 | 5990 | 0.0416 | - | - |
|
1132 |
+
| 2.3781 | 6000 | 0.0422 | 0.0493 | 0.9599 |
|
1133 |
+
| 2.3821 | 6010 | 0.041 | - | - |
|
1134 |
+
| 2.3860 | 6020 | 0.0404 | - | - |
|
1135 |
+
| 2.3900 | 6030 | 0.0404 | - | - |
|
1136 |
+
| 2.3940 | 6040 | 0.0412 | - | - |
|
1137 |
+
| 2.3979 | 6050 | 0.0424 | - | - |
|
1138 |
+
| 2.4019 | 6060 | 0.043 | - | - |
|
1139 |
+
| 2.4059 | 6070 | 0.0416 | - | - |
|
1140 |
+
| 2.4098 | 6080 | 0.0405 | - | - |
|
1141 |
+
| 2.4138 | 6090 | 0.0408 | - | - |
|
1142 |
+
| 2.4178 | 6100 | 0.0413 | - | - |
|
1143 |
+
| 2.4217 | 6110 | 0.0408 | - | - |
|
1144 |
+
| 2.4257 | 6120 | 0.0407 | - | - |
|
1145 |
+
| 2.4296 | 6130 | 0.041 | - | - |
|
1146 |
+
| 2.4336 | 6140 | 0.0387 | - | - |
|
1147 |
+
| 2.4376 | 6150 | 0.0408 | - | - |
|
1148 |
+
| 2.4415 | 6160 | 0.0413 | - | - |
|
1149 |
+
| 2.4455 | 6170 | 0.0429 | - | - |
|
1150 |
+
| 2.4495 | 6180 | 0.0394 | - | - |
|
1151 |
+
| 2.4534 | 6190 | 0.041 | - | - |
|
1152 |
+
| 2.4574 | 6200 | 0.0419 | - | - |
|
1153 |
+
| 2.4614 | 6210 | 0.0395 | - | - |
|
1154 |
+
| 2.4653 | 6220 | 0.0405 | - | - |
|
1155 |
+
| 2.4693 | 6230 | 0.0412 | - | - |
|
1156 |
+
| 2.4732 | 6240 | 0.0439 | - | - |
|
1157 |
+
| 2.4772 | 6250 | 0.0423 | - | - |
|
1158 |
+
| 2.4812 | 6260 | 0.0423 | - | - |
|
1159 |
+
| 2.4851 | 6270 | 0.0406 | - | - |
|
1160 |
+
| 2.4891 | 6280 | 0.0402 | - | - |
|
1161 |
+
| 2.4931 | 6290 | 0.0428 | - | - |
|
1162 |
+
| 2.4970 | 6300 | 0.0422 | - | - |
|
1163 |
+
| 2.5010 | 6310 | 0.0399 | - | - |
|
1164 |
+
| 2.5050 | 6320 | 0.0409 | - | - |
|
1165 |
+
| 2.5089 | 6330 | 0.0412 | - | - |
|
1166 |
+
| 2.5129 | 6340 | 0.0403 | - | - |
|
1167 |
+
| 2.5168 | 6350 | 0.04 | - | - |
|
1168 |
+
| 2.5208 | 6360 | 0.0412 | - | - |
|
1169 |
+
| 2.5248 | 6370 | 0.0424 | - | - |
|
1170 |
+
| 2.5287 | 6380 | 0.0409 | - | - |
|
1171 |
+
| 2.5327 | 6390 | 0.0409 | - | - |
|
1172 |
+
| 2.5367 | 6400 | 0.0418 | - | - |
|
1173 |
+
| 2.5406 | 6410 | 0.0403 | - | - |
|
1174 |
+
| 2.5446 | 6420 | 0.0413 | - | - |
|
1175 |
+
| 2.5486 | 6430 | 0.038 | - | - |
|
1176 |
+
| 2.5525 | 6440 | 0.0414 | - | - |
|
1177 |
+
| 2.5565 | 6450 | 0.0409 | - | - |
|
1178 |
+
| 2.5604 | 6460 | 0.0407 | - | - |
|
1179 |
+
| 2.5644 | 6470 | 0.0406 | - | - |
|
1180 |
+
| 2.5684 | 6480 | 0.0392 | - | - |
|
1181 |
+
| 2.5723 | 6490 | 0.0417 | - | - |
|
1182 |
+
| 2.5763 | 6500 | 0.0391 | 0.0487 | 0.9605 |
|
1183 |
+
| 2.5803 | 6510 | 0.039 | - | - |
|
1184 |
+
| 2.5842 | 6520 | 0.0414 | - | - |
|
1185 |
+
| 2.5882 | 6530 | 0.0411 | - | - |
|
1186 |
+
| 2.5922 | 6540 | 0.0395 | - | - |
|
1187 |
+
| 2.5961 | 6550 | 0.0405 | - | - |
|
1188 |
+
| 2.6001 | 6560 | 0.0392 | - | - |
|
1189 |
+
| 2.6040 | 6570 | 0.041 | - | - |
|
1190 |
+
| 2.6080 | 6580 | 0.0387 | - | - |
|
1191 |
+
| 2.6120 | 6590 | 0.0409 | - | - |
|
1192 |
+
| 2.6159 | 6600 | 0.0416 | - | - |
|
1193 |
+
| 2.6199 | 6610 | 0.0399 | - | - |
|
1194 |
+
| 2.6239 | 6620 | 0.0395 | - | - |
|
1195 |
+
| 2.6278 | 6630 | 0.0416 | - | - |
|
1196 |
+
| 2.6318 | 6640 | 0.0397 | - | - |
|
1197 |
+
| 2.6358 | 6650 | 0.041 | - | - |
|
1198 |
+
| 2.6397 | 6660 | 0.0422 | - | - |
|
1199 |
+
| 2.6437 | 6670 | 0.0404 | - | - |
|
1200 |
+
| 2.6476 | 6680 | 0.0405 | - | - |
|
1201 |
+
| 2.6516 | 6690 | 0.0413 | - | - |
|
1202 |
+
| 2.6556 | 6700 | 0.0405 | - | - |
|
1203 |
+
| 2.6595 | 6710 | 0.04 | - | - |
|
1204 |
+
| 2.6635 | 6720 | 0.0383 | - | - |
|
1205 |
+
| 2.6675 | 6730 | 0.0412 | - | - |
|
1206 |
+
| 2.6714 | 6740 | 0.0416 | - | - |
|
1207 |
+
| 2.6754 | 6750 | 0.0405 | - | - |
|
1208 |
+
| 2.6793 | 6760 | 0.0423 | - | - |
|
1209 |
+
| 2.6833 | 6770 | 0.0419 | - | - |
|
1210 |
+
| 2.6873 | 6780 | 0.0405 | - | - |
|
1211 |
+
| 2.6912 | 6790 | 0.0409 | - | - |
|
1212 |
+
| 2.6952 | 6800 | 0.04 | - | - |
|
1213 |
+
| 2.6992 | 6810 | 0.0397 | - | - |
|
1214 |
+
| 2.7031 | 6820 | 0.039 | - | - |
|
1215 |
+
| 2.7071 | 6830 | 0.0393 | - | - |
|
1216 |
+
| 2.7111 | 6840 | 0.0413 | - | - |
|
1217 |
+
| 2.7150 | 6850 | 0.039 | - | - |
|
1218 |
+
| 2.7190 | 6860 | 0.04 | - | - |
|
1219 |
+
| 2.7229 | 6870 | 0.0409 | - | - |
|
1220 |
+
| 2.7269 | 6880 | 0.0403 | - | - |
|
1221 |
+
| 2.7309 | 6890 | 0.0397 | - | - |
|
1222 |
+
| 2.7348 | 6900 | 0.0404 | - | - |
|
1223 |
+
| 2.7388 | 6910 | 0.0396 | - | - |
|
1224 |
+
| 2.7428 | 6920 | 0.04 | - | - |
|
1225 |
+
| 2.7467 | 6930 | 0.0397 | - | - |
|
1226 |
+
| 2.7507 | 6940 | 0.0393 | - | - |
|
1227 |
+
| 2.7547 | 6950 | 0.037 | - | - |
|
1228 |
+
| 2.7586 | 6960 | 0.0383 | - | - |
|
1229 |
+
| 2.7626 | 6970 | 0.04 | - | - |
|
1230 |
+
| 2.7665 | 6980 | 0.0406 | - | - |
|
1231 |
+
| 2.7705 | 6990 | 0.0394 | - | - |
|
1232 |
+
| 2.7745 | 7000 | 0.0385 | 0.0482 | 0.9609 |
|
1233 |
+
| 2.7784 | 7010 | 0.0383 | - | - |
|
1234 |
+
| 2.7824 | 7020 | 0.0403 | - | - |
|
1235 |
+
| 2.7864 | 7030 | 0.04 | - | - |
|
1236 |
+
| 2.7903 | 7040 | 0.0395 | - | - |
|
1237 |
+
| 2.7943 | 7050 | 0.039 | - | - |
|
1238 |
+
| 2.7983 | 7060 | 0.0398 | - | - |
|
1239 |
+
| 2.8022 | 7070 | 0.0401 | - | - |
|
1240 |
+
| 2.8062 | 7080 | 0.0401 | - | - |
|
1241 |
+
| 2.8101 | 7090 | 0.0395 | - | - |
|
1242 |
+
| 2.8141 | 7100 | 0.0396 | - | - |
|
1243 |
+
| 2.8181 | 7110 | 0.0395 | - | - |
|
1244 |
+
| 2.8220 | 7120 | 0.0411 | - | - |
|
1245 |
+
| 2.8260 | 7130 | 0.0386 | - | - |
|
1246 |
+
| 2.8300 | 7140 | 0.0382 | - | - |
|
1247 |
+
| 2.8339 | 7150 | 0.0386 | - | - |
|
1248 |
+
| 2.8379 | 7160 | 0.0389 | - | - |
|
1249 |
+
| 2.8419 | 7170 | 0.0396 | - | - |
|
1250 |
+
| 2.8458 | 7180 | 0.0394 | - | - |
|
1251 |
+
| 2.8498 | 7190 | 0.04 | - | - |
|
1252 |
+
| 2.8537 | 7200 | 0.0401 | - | - |
|
1253 |
+
| 2.8577 | 7210 | 0.0412 | - | - |
|
1254 |
+
| 2.8617 | 7220 | 0.0383 | - | - |
|
1255 |
+
| 2.8656 | 7230 | 0.0392 | - | - |
|
1256 |
+
| 2.8696 | 7240 | 0.0394 | - | - |
|
1257 |
+
| 2.8736 | 7250 | 0.0399 | - | - |
|
1258 |
+
| 2.8775 | 7260 | 0.0403 | - | - |
|
1259 |
+
| 2.8815 | 7270 | 0.0384 | - | - |
|
1260 |
+
| 2.8855 | 7280 | 0.0397 | - | - |
|
1261 |
+
| 2.8894 | 7290 | 0.0407 | - | - |
|
1262 |
+
| 2.8934 | 7300 | 0.0386 | - | - |
|
1263 |
+
| 2.8973 | 7310 | 0.0385 | - | - |
|
1264 |
+
| 2.9013 | 7320 | 0.0405 | - | - |
|
1265 |
+
| 2.9053 | 7330 | 0.0389 | - | - |
|
1266 |
+
| 2.9092 | 7340 | 0.0362 | - | - |
|
1267 |
+
| 2.9132 | 7350 | 0.0397 | - | - |
|
1268 |
+
| 2.9172 | 7360 | 0.0393 | - | - |
|
1269 |
+
| 2.9211 | 7370 | 0.0397 | - | - |
|
1270 |
+
| 2.9251 | 7380 | 0.0386 | - | - |
|
1271 |
+
| 2.9291 | 7390 | 0.0388 | - | - |
|
1272 |
+
| 2.9330 | 7400 | 0.0366 | - | - |
|
1273 |
+
| 2.9370 | 7410 | 0.0394 | - | - |
|
1274 |
+
| 2.9409 | 7420 | 0.0396 | - | - |
|
1275 |
+
| 2.9449 | 7430 | 0.0393 | - | - |
|
1276 |
+
| 2.9489 | 7440 | 0.0401 | - | - |
|
1277 |
+
| 2.9528 | 7450 | 0.0391 | - | - |
|
1278 |
+
| 2.9568 | 7460 | 0.0388 | - | - |
|
1279 |
+
| 2.9608 | 7470 | 0.0386 | - | - |
|
1280 |
+
| 2.9647 | 7480 | 0.0391 | - | - |
|
1281 |
+
| 2.9687 | 7490 | 0.037 | - | - |
|
1282 |
+
| 2.9727 | 7500 | 0.0386 | 0.0477 | 0.9613 |
|
1283 |
+
| 2.9766 | 7510 | 0.0392 | - | - |
|
1284 |
+
| 2.9806 | 7520 | 0.0399 | - | - |
|
1285 |
+
| 2.9845 | 7530 | 0.0385 | - | - |
|
1286 |
+
| 2.9885 | 7540 | 0.0381 | - | - |
|
1287 |
+
| 2.9925 | 7550 | 0.0392 | - | - |
|
1288 |
+
| 2.9964 | 7560 | 0.0386 | - | - |
|
1289 |
+
| 3.0004 | 7570 | 0.0394 | - | - |
|
1290 |
+
| 3.0044 | 7580 | 0.0401 | - | - |
|
1291 |
+
| 3.0083 | 7590 | 0.0404 | - | - |
|
1292 |
+
| 3.0123 | 7600 | 0.0384 | - | - |
|
1293 |
+
| 3.0163 | 7610 | 0.0381 | - | - |
|
1294 |
+
| 3.0202 | 7620 | 0.0383 | - | - |
|
1295 |
+
| 3.0242 | 7630 | 0.0389 | - | - |
|
1296 |
+
| 3.0281 | 7640 | 0.0364 | - | - |
|
1297 |
+
| 3.0321 | 7650 | 0.0399 | - | - |
|
1298 |
+
| 3.0361 | 7660 | 0.0383 | - | - |
|
1299 |
+
| 3.0400 | 7670 | 0.0401 | - | - |
|
1300 |
+
| 3.0440 | 7680 | 0.0388 | - | - |
|
1301 |
+
| 3.0480 | 7690 | 0.0389 | - | - |
|
1302 |
+
| 3.0519 | 7700 | 0.036 | - | - |
|
1303 |
+
| 3.0559 | 7710 | 0.0403 | - | - |
|
1304 |
+
| 3.0598 | 7720 | 0.0376 | - | - |
|
1305 |
+
| 3.0638 | 7730 | 0.0387 | - | - |
|
1306 |
+
| 3.0678 | 7740 | 0.0405 | - | - |
|
1307 |
+
| 3.0717 | 7750 | 0.0399 | - | - |
|
1308 |
+
| 3.0757 | 7760 | 0.0382 | - | - |
|
1309 |
+
| 3.0797 | 7770 | 0.0376 | - | - |
|
1310 |
+
| 3.0836 | 7780 | 0.0393 | - | - |
|
1311 |
+
| 3.0876 | 7790 | 0.0388 | - | - |
|
1312 |
+
| 3.0916 | 7800 | 0.0395 | - | - |
|
1313 |
+
| 3.0955 | 7810 | 0.0391 | - | - |
|
1314 |
+
| 3.0995 | 7820 | 0.0392 | - | - |
|
1315 |
+
| 3.1034 | 7830 | 0.0371 | - | - |
|
1316 |
+
| 3.1074 | 7840 | 0.039 | - | - |
|
1317 |
+
| 3.1114 | 7850 | 0.0395 | - | - |
|
1318 |
+
| 3.1153 | 7860 | 0.0385 | - | - |
|
1319 |
+
| 3.1193 | 7870 | 0.0362 | - | - |
|
1320 |
+
| 3.1233 | 7880 | 0.0375 | - | - |
|
1321 |
+
| 3.1272 | 7890 | 0.0376 | - | - |
|
1322 |
+
| 3.1312 | 7900 | 0.0384 | - | - |
|
1323 |
+
| 3.1352 | 7910 | 0.0378 | - | - |
|
1324 |
+
| 3.1391 | 7920 | 0.0393 | - | - |
|
1325 |
+
| 3.1431 | 7930 | 0.0378 | - | - |
|
1326 |
+
| 3.1470 | 7940 | 0.0404 | - | - |
|
1327 |
+
| 3.1510 | 7950 | 0.0361 | - | - |
|
1328 |
+
| 3.1550 | 7960 | 0.0369 | - | - |
|
1329 |
+
| 3.1589 | 7970 | 0.0396 | - | - |
|
1330 |
+
| 3.1629 | 7980 | 0.0404 | - | - |
|
1331 |
+
| 3.1669 | 7990 | 0.0386 | - | - |
|
1332 |
+
| 3.1708 | 8000 | 0.038 | 0.0473 | 0.9616 |
|
1333 |
+
| 3.1748 | 8010 | 0.0372 | - | - |
|
1334 |
+
| 3.1788 | 8020 | 0.0373 | - | - |
|
1335 |
+
| 3.1827 | 8030 | 0.0369 | - | - |
|
1336 |
+
| 3.1867 | 8040 | 0.0371 | - | - |
|
1337 |
+
| 3.1906 | 8050 | 0.0386 | - | - |
|
1338 |
+
| 3.1946 | 8060 | 0.038 | - | - |
|
1339 |
+
| 3.1986 | 8070 | 0.0366 | - | - |
|
1340 |
+
| 3.2025 | 8080 | 0.0378 | - | - |
|
1341 |
+
| 3.2065 | 8090 | 0.0379 | - | - |
|
1342 |
+
| 3.2105 | 8100 | 0.038 | - | - |
|
1343 |
+
| 3.2144 | 8110 | 0.0374 | - | - |
|
1344 |
+
| 3.2184 | 8120 | 0.0388 | - | - |
|
1345 |
+
| 3.2224 | 8130 | 0.038 | - | - |
|
1346 |
+
| 3.2263 | 8140 | 0.0363 | - | - |
|
1347 |
+
| 3.2303 | 8150 | 0.0369 | - | - |
|
1348 |
+
| 3.2342 | 8160 | 0.0371 | - | - |
|
1349 |
+
| 3.2382 | 8170 | 0.0377 | - | - |
|
1350 |
+
| 3.2422 | 8180 | 0.0364 | - | - |
|
1351 |
+
| 3.2461 | 8190 | 0.0372 | - | - |
|
1352 |
+
| 3.2501 | 8200 | 0.0403 | - | - |
|
1353 |
+
| 3.2541 | 8210 | 0.0385 | - | - |
|
1354 |
+
| 3.2580 | 8220 | 0.0385 | - | - |
|
1355 |
+
| 3.2620 | 8230 | 0.0386 | - | - |
|
1356 |
+
| 3.2660 | 8240 | 0.0369 | - | - |
|
1357 |
+
| 3.2699 | 8250 | 0.039 | - | - |
|
1358 |
+
| 3.2739 | 8260 | 0.0365 | - | - |
|
1359 |
+
| 3.2778 | 8270 | 0.0382 | - | - |
|
1360 |
+
| 3.2818 | 8280 | 0.0354 | - | - |
|
1361 |
+
| 3.2858 | 8290 | 0.0393 | - | - |
|
1362 |
+
| 3.2897 | 8300 | 0.0387 | - | - |
|
1363 |
+
| 3.2937 | 8310 | 0.0366 | - | - |
|
1364 |
+
| 3.2977 | 8320 | 0.0391 | - | - |
|
1365 |
+
| 3.3016 | 8330 | 0.0382 | - | - |
|
1366 |
+
| 3.3056 | 8340 | 0.0377 | - | - |
|
1367 |
+
| 3.3096 | 8350 | 0.0369 | - | - |
|
1368 |
+
| 3.3135 | 8360 | 0.0384 | - | - |
|
1369 |
+
| 3.3175 | 8370 | 0.0379 | - | - |
|
1370 |
+
| 3.3214 | 8380 | 0.0372 | - | - |
|
1371 |
+
| 3.3254 | 8390 | 0.0391 | - | - |
|
1372 |
+
| 3.3294 | 8400 | 0.0378 | - | - |
|
1373 |
+
| 3.3333 | 8410 | 0.0393 | - | - |
|
1374 |
+
| 3.3373 | 8420 | 0.0373 | - | - |
|
1375 |
+
| 3.3413 | 8430 | 0.0394 | - | - |
|
1376 |
+
| 3.3452 | 8440 | 0.0367 | - | - |
|
1377 |
+
| 3.3492 | 8450 | 0.0373 | - | - |
|
1378 |
+
| 3.3532 | 8460 | 0.0362 | - | - |
|
1379 |
+
| 3.3571 | 8470 | 0.0372 | - | - |
|
1380 |
+
| 3.3611 | 8480 | 0.0396 | - | - |
|
1381 |
+
| 3.3650 | 8490 | 0.0392 | - | - |
|
1382 |
+
| 3.3690 | 8500 | 0.0374 | 0.0470 | 0.9616 |
|
1383 |
+
| 3.3730 | 8510 | 0.0378 | - | - |
|
1384 |
+
| 3.3769 | 8520 | 0.0385 | - | - |
|
1385 |
+
| 3.3809 | 8530 | 0.0375 | - | - |
|
1386 |
+
| 3.3849 | 8540 | 0.0392 | - | - |
|
1387 |
+
| 3.3888 | 8550 | 0.0378 | - | - |
|
1388 |
+
| 3.3928 | 8560 | 0.0366 | - | - |
|
1389 |
+
| 3.3967 | 8570 | 0.0383 | - | - |
|
1390 |
+
| 3.4007 | 8580 | 0.0372 | - | - |
|
1391 |
+
| 3.4047 | 8590 | 0.038 | - | - |
|
1392 |
+
| 3.4086 | 8600 | 0.0384 | - | - |
|
1393 |
+
| 3.4126 | 8610 | 0.0359 | - | - |
|
1394 |
+
| 3.4166 | 8620 | 0.0377 | - | - |
|
1395 |
+
| 3.4205 | 8630 | 0.0387 | - | - |
|
1396 |
+
| 3.4245 | 8640 | 0.0365 | - | - |
|
1397 |
+
| 3.4285 | 8650 | 0.0359 | - | - |
|
1398 |
+
| 3.4324 | 8660 | 0.0358 | - | - |
|
1399 |
+
| 3.4364 | 8670 | 0.0366 | - | - |
|
1400 |
+
| 3.4403 | 8680 | 0.0369 | - | - |
|
1401 |
+
| 3.4443 | 8690 | 0.0365 | - | - |
|
1402 |
+
| 3.4483 | 8700 | 0.0366 | - | - |
|
1403 |
+
| 3.4522 | 8710 | 0.0357 | - | - |
|
1404 |
+
| 3.4562 | 8720 | 0.036 | - | - |
|
1405 |
+
| 3.4602 | 8730 | 0.0365 | - | - |
|
1406 |
+
| 3.4641 | 8740 | 0.0381 | - | - |
|
1407 |
+
| 3.4681 | 8750 | 0.0399 | - | - |
|
1408 |
+
| 3.4721 | 8760 | 0.0388 | - | - |
|
1409 |
+
| 3.4760 | 8770 | 0.0366 | - | - |
|
1410 |
+
| 3.4800 | 8780 | 0.0346 | - | - |
|
1411 |
+
| 3.4839 | 8790 | 0.0371 | - | - |
|
1412 |
+
| 3.4879 | 8800 | 0.0376 | - | - |
|
1413 |
+
| 3.4919 | 8810 | 0.0374 | - | - |
|
1414 |
+
| 3.4958 | 8820 | 0.0354 | - | - |
|
1415 |
+
| 3.4998 | 8830 | 0.0363 | - | - |
|
1416 |
+
| 3.5038 | 8840 | 0.0374 | - | - |
|
1417 |
+
| 3.5077 | 8850 | 0.0373 | - | - |
|
1418 |
+
| 3.5117 | 8860 | 0.0347 | - | - |
|
1419 |
+
| 3.5157 | 8870 | 0.0374 | - | - |
|
1420 |
+
| 3.5196 | 8880 | 0.0349 | - | - |
|
1421 |
+
| 3.5236 | 8890 | 0.0376 | - | - |
|
1422 |
+
| 3.5275 | 8900 | 0.0363 | - | - |
|
1423 |
+
| 3.5315 | 8910 | 0.036 | - | - |
|
1424 |
+
| 3.5355 | 8920 | 0.0378 | - | - |
|
1425 |
+
| 3.5394 | 8930 | 0.0376 | - | - |
|
1426 |
+
| 3.5434 | 8940 | 0.039 | - | - |
|
1427 |
+
| 3.5474 | 8950 | 0.0373 | - | - |
|
1428 |
+
| 3.5513 | 8960 | 0.0361 | - | - |
|
1429 |
+
| 3.5553 | 8970 | 0.0356 | - | - |
|
1430 |
+
| 3.5593 | 8980 | 0.0357 | - | - |
|
1431 |
+
| 3.5632 | 8990 | 0.0371 | - | - |
|
1432 |
+
| 3.5672 | 9000 | 0.0374 | 0.0468 | 0.9617 |
|
1433 |
+
| 3.5711 | 9010 | 0.0372 | - | - |
|
1434 |
+
| 3.5751 | 9020 | 0.0369 | - | - |
|
1435 |
+
| 3.5791 | 9030 | 0.0362 | - | - |
|
1436 |
+
| 3.5830 | 9040 | 0.0367 | - | - |
|
1437 |
+
| 3.5870 | 9050 | 0.0388 | - | - |
|
1438 |
+
| 3.5910 | 9060 | 0.0369 | - | - |
|
1439 |
+
| 3.5949 | 9070 | 0.0375 | - | - |
|
1440 |
+
| 3.5989 | 9080 | 0.0374 | - | - |
|
1441 |
+
| 3.6029 | 9090 | 0.0365 | - | - |
|
1442 |
+
| 3.6068 | 9100 | 0.0363 | - | - |
|
1443 |
+
| 3.6108 | 9110 | 0.0396 | - | - |
|
1444 |
+
| 3.6147 | 9120 | 0.0372 | - | - |
|
1445 |
+
| 3.6187 | 9130 | 0.0363 | - | - |
|
1446 |
+
| 3.6227 | 9140 | 0.0363 | - | - |
|
1447 |
+
| 3.6266 | 9150 | 0.0366 | - | - |
|
1448 |
+
| 3.6306 | 9160 | 0.0352 | - | - |
|
1449 |
+
| 3.6346 | 9170 | 0.038 | - | - |
|
1450 |
+
| 3.6385 | 9180 | 0.0359 | - | - |
|
1451 |
+
| 3.6425 | 9190 | 0.0374 | - | - |
|
1452 |
+
| 3.6465 | 9200 | 0.0363 | - | - |
|
1453 |
+
| 3.6504 | 9210 | 0.0356 | - | - |
|
1454 |
+
| 3.6544 | 9220 | 0.0354 | - | - |
|
1455 |
+
| 3.6583 | 9230 | 0.0377 | - | - |
|
1456 |
+
| 3.6623 | 9240 | 0.0361 | - | - |
|
1457 |
+
| 3.6663 | 9250 | 0.0374 | - | - |
|
1458 |
+
| 3.6702 | 9260 | 0.0373 | - | - |
|
1459 |
+
| 3.6742 | 9270 | 0.0357 | - | - |
|
1460 |
+
| 3.6782 | 9280 | 0.0359 | - | - |
|
1461 |
+
| 3.6821 | 9290 | 0.037 | - | - |
|
1462 |
+
| 3.6861 | 9300 | 0.0366 | - | - |
|
1463 |
+
| 3.6901 | 9310 | 0.0374 | - | - |
|
1464 |
+
| 3.6940 | 9320 | 0.0376 | - | - |
|
1465 |
+
| 3.6980 | 9330 | 0.0373 | - | - |
|
1466 |
+
| 3.7019 | 9340 | 0.0363 | - | - |
|
1467 |
+
| 3.7059 | 9350 | 0.0381 | - | - |
|
1468 |
+
| 3.7099 | 9360 | 0.0353 | - | - |
|
1469 |
+
| 3.7138 | 9370 | 0.0363 | - | - |
|
1470 |
+
| 3.7178 | 9380 | 0.0377 | - | - |
|
1471 |
+
| 3.7218 | 9390 | 0.0364 | - | - |
|
1472 |
+
| 3.7257 | 9400 | 0.0378 | - | - |
|
1473 |
+
| 3.7297 | 9410 | 0.0376 | - | - |
|
1474 |
+
| 3.7337 | 9420 | 0.0376 | - | - |
|
1475 |
+
| 3.7376 | 9430 | 0.0368 | - | - |
|
1476 |
+
| 3.7416 | 9440 | 0.0381 | - | - |
|
1477 |
+
| 3.7455 | 9450 | 0.0358 | - | - |
|
1478 |
+
| 3.7495 | 9460 | 0.0362 | - | - |
|
1479 |
+
| 3.7535 | 9470 | 0.038 | - | - |
|
1480 |
+
| 3.7574 | 9480 | 0.0371 | - | - |
|
1481 |
+
| 3.7614 | 9490 | 0.0371 | - | - |
|
1482 |
+
| 3.7654 | 9500 | 0.0353 | 0.0465 | 0.9617 |
|
1483 |
+
| 3.7693 | 9510 | 0.0381 | - | - |
|
1484 |
+
| 3.7733 | 9520 | 0.0362 | - | - |
|
1485 |
+
| 3.7772 | 9530 | 0.0352 | - | - |
|
1486 |
+
| 3.7812 | 9540 | 0.0363 | - | - |
|
1487 |
+
| 3.7852 | 9550 | 0.0352 | - | - |
|
1488 |
+
| 3.7891 | 9560 | 0.0367 | - | - |
|
1489 |
+
| 3.7931 | 9570 | 0.035 | - | - |
|
1490 |
+
| 3.7971 | 9580 | 0.0367 | - | - |
|
1491 |
+
| 3.8010 | 9590 | 0.0369 | - | - |
|
1492 |
+
| 3.8050 | 9600 | 0.0365 | - | - |
|
1493 |
+
| 3.8090 | 9610 | 0.0369 | - | - |
|
1494 |
+
| 3.8129 | 9620 | 0.0359 | - | - |
|
1495 |
+
| 3.8169 | 9630 | 0.0367 | - | - |
|
1496 |
+
| 3.8208 | 9640 | 0.0384 | - | - |
|
1497 |
+
| 3.8248 | 9650 | 0.0359 | - | - |
|
1498 |
+
| 3.8288 | 9660 | 0.0368 | - | - |
|
1499 |
+
| 3.8327 | 9670 | 0.0363 | - | - |
|
1500 |
+
| 3.8367 | 9680 | 0.0374 | - | - |
|
1501 |
+
| 3.8407 | 9690 | 0.0372 | - | - |
|
1502 |
+
| 3.8446 | 9700 | 0.0361 | - | - |
|
1503 |
+
| 3.8486 | 9710 | 0.0381 | - | - |
|
1504 |
+
| 3.8526 | 9720 | 0.0342 | - | - |
|
1505 |
+
| 3.8565 | 9730 | 0.0348 | - | - |
|
1506 |
+
| 3.8605 | 9740 | 0.0372 | - | - |
|
1507 |
+
| 3.8644 | 9750 | 0.0377 | - | - |
|
1508 |
+
| 3.8684 | 9760 | 0.0356 | - | - |
|
1509 |
+
| 3.8724 | 9770 | 0.0365 | - | - |
|
1510 |
+
| 3.8763 | 9780 | 0.0368 | - | - |
|
1511 |
+
| 3.8803 | 9790 | 0.0366 | - | - |
|
1512 |
+
| 3.8843 | 9800 | 0.0383 | - | - |
|
1513 |
+
| 3.8882 | 9810 | 0.0353 | - | - |
|
1514 |
+
| 3.8922 | 9820 | 0.0377 | - | - |
|
1515 |
+
| 3.8962 | 9830 | 0.0364 | - | - |
|
1516 |
+
| 3.9001 | 9840 | 0.0362 | - | - |
|
1517 |
+
| 3.9041 | 9850 | 0.0351 | - | - |
|
1518 |
+
| 3.9080 | 9860 | 0.0381 | - | - |
|
1519 |
+
| 3.9120 | 9870 | 0.0368 | - | - |
|
1520 |
+
| 3.9160 | 9880 | 0.0361 | - | - |
|
1521 |
+
| 3.9199 | 9890 | 0.0356 | - | - |
|
1522 |
+
| 3.9239 | 9900 | 0.035 | - | - |
|
1523 |
+
| 3.9279 | 9910 | 0.0345 | - | - |
|
1524 |
+
| 3.9318 | 9920 | 0.0378 | - | - |
|
1525 |
+
| 3.9358 | 9930 | 0.036 | - | - |
|
1526 |
+
| 3.9398 | 9940 | 0.0367 | - | - |
|
1527 |
+
| 3.9437 | 9950 | 0.0356 | - | - |
|
1528 |
+
| 3.9477 | 9960 | 0.034 | - | - |
|
1529 |
+
| 3.9516 | 9970 | 0.0377 | - | - |
|
1530 |
+
| 3.9556 | 9980 | 0.0379 | - | - |
|
1531 |
+
| 3.9596 | 9990 | 0.0388 | - | - |
|
1532 |
+
| 3.9635 | 10000 | 0.0362 | 0.0463 | 0.9618 |
|
1533 |
+
|
1534 |
+
</details>
|
1535 |
+
|
1536 |
+
### Framework Versions
|
1537 |
+
- Python: 3.10.10
|
1538 |
+
- Sentence Transformers: 3.0.1
|
1539 |
+
- Transformers: 4.45.0.dev0
|
1540 |
+
- PyTorch: 2.2.1+cu121
|
1541 |
+
- Accelerate: 0.34.2
|
1542 |
+
- Datasets: 2.21.0
|
1543 |
+
- Tokenizers: 0.19.1
|
1544 |
+
|
1545 |
+
## Citation
|
1546 |
+
|
1547 |
+
### BibTeX
|
1548 |
+
|
1549 |
+
#### Sentence Transformers
|
1550 |
+
```bibtex
|
1551 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1552 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1553 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1554 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1555 |
+
month = "11",
|
1556 |
+
year = "2019",
|
1557 |
+
publisher = "Association for Computational Linguistics",
|
1558 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1559 |
+
}
|
1560 |
+
```
|
1561 |
+
|
1562 |
+
#### ContrastiveLoss
|
1563 |
+
```bibtex
|
1564 |
+
@inproceedings{hadsell2006dimensionality,
|
1565 |
+
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
|
1566 |
+
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
|
1567 |
+
title={Dimensionality Reduction by Learning an Invariant Mapping},
|
1568 |
+
year={2006},
|
1569 |
+
volume={2},
|
1570 |
+
number={},
|
1571 |
+
pages={1735-1742},
|
1572 |
+
doi={10.1109/CVPR.2006.100}
|
1573 |
+
}
|
1574 |
+
```
|
1575 |
+
|
1576 |
+
<!--
|
1577 |
+
## Glossary
|
1578 |
+
|
1579 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1580 |
+
-->
|
1581 |
+
|
1582 |
+
<!--
|
1583 |
+
## Model Card Authors
|
1584 |
+
|
1585 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1586 |
+
-->
|
1587 |
+
|
1588 |
+
<!--
|
1589 |
+
## Model Card Contact
|
1590 |
+
|
1591 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1592 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "train7.py_output/checkpoint-10000",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.45.0.dev0",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.45.0.dev0",
|
5 |
+
"pytorch": "2.2.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6119a4c21090c152f5f29725a065ed379060943e1414b246996ac0642efc2e00
|
3 |
+
size 437967672
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 128,
|
59 |
+
"model_max_length": 384,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"sep_token": "</s>",
|
65 |
+
"stride": 0,
|
66 |
+
"strip_accents": null,
|
67 |
+
"tokenize_chinese_chars": true,
|
68 |
+
"tokenizer_class": "MPNetTokenizer",
|
69 |
+
"truncation_side": "right",
|
70 |
+
"truncation_strategy": "longest_first",
|
71 |
+
"unk_token": "[UNK]"
|
72 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|