|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: xlm-roberta-base-finetuned-code-mixed-DS |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-finetuned-code-mixed-DS |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8266 |
|
- Accuracy: 0.6318 |
|
- Precision: 0.5781 |
|
- Recall: 0.5978 |
|
- F1: 0.5677 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4.932923543227153e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 43 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.0602 | 1.0 | 248 | 1.0280 | 0.5211 | 0.4095 | 0.4557 | 0.3912 | |
|
| 0.9741 | 1.99 | 496 | 0.9318 | 0.5533 | 0.4758 | 0.5002 | 0.4415 | |
|
| 0.8585 | 2.99 | 744 | 0.8585 | 0.6076 | 0.5539 | 0.5731 | 0.5353 | |
|
| 0.7293 | 3.98 | 992 | 0.8266 | 0.6318 | 0.5781 | 0.5978 | 0.5677 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.10.1+cu111 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|