FRACTAL-LidarHD_7cl_randlanet / FRACTAL-LidarHD_7cl_randlanet-inference-Myria3DV3.8.yaml
CharlesGaydon's picture
Rename FRACTAL-LidarHD_7cl_randlanet-inference-Myria3DV3.3.yaml to FRACTAL-LidarHD_7cl_randlanet-inference-Myria3DV3.8.yaml
30fc749 verified
seed: 12345
work_dir: ${hydra:runtime.cwd}
debug: false
print_config: true
ignore_warnings: true
datamodule:
transforms:
preparations:
eval:
TargetTransform:
_target_: myria3d.pctl.transforms.transforms.TargetTransform
_args_:
- ${dataset_description.classification_preprocessing_dict}
- ${dataset_description.classification_dict}
DropPointsByClass:
_target_: myria3d.pctl.transforms.transforms.DropPointsByClass
CopyFullPos:
_target_: myria3d.pctl.transforms.transforms.CopyFullPos
CopyFullPreparedTargets:
_target_: myria3d.pctl.transforms.transforms.CopyFullPreparedTargets
GridSampling:
_target_: torch_geometric.transforms.GridSampling
_args_:
- 0.25
MinimumNumNodes:
_target_: myria3d.pctl.transforms.transforms.MinimumNumNodes
_args_:
- 300
MaximumNumNodes:
_target_: myria3d.pctl.transforms.transforms.MaximumNumNodes
_args_:
- 40000
CopySampledPos:
_target_: myria3d.pctl.transforms.transforms.CopySampledPos
Center:
_target_: torch_geometric.transforms.Center
predict:
DropPointsByClass:
_target_: myria3d.pctl.transforms.transforms.DropPointsByClass
CopyFullPos:
_target_: myria3d.pctl.transforms.transforms.CopyFullPos
GridSampling:
_target_: torch_geometric.transforms.GridSampling
_args_:
- 0.25
MinimumNumNodes:
_target_: myria3d.pctl.transforms.transforms.MinimumNumNodes
_args_:
- 300
MaximumNumNodes:
_target_: myria3d.pctl.transforms.transforms.MaximumNumNodes
_args_:
- 40000
CopySampledPos:
_target_: myria3d.pctl.transforms.transforms.CopySampledPos
Center:
_target_: torch_geometric.transforms.Center
normalizations:
NullifyLowestZ:
_target_: myria3d.pctl.transforms.transforms.NullifyLowestZ
NormalizePos:
_target_: myria3d.pctl.transforms.transforms.NormalizePos
subtile_width: ${datamodule.subtile_width}
StandardizeRGBAndIntensity:
_target_: myria3d.pctl.transforms.transforms.StandardizeRGBAndIntensity
preparations_eval_list: '${oc.dict.values: datamodule.transforms.preparations.eval}'
preparations_predict_list: '${oc.dict.values: datamodule.transforms.preparations.predict}'
normalizations_list: '${oc.dict.values: datamodule.transforms.normalizations}'
_target_: myria3d.pctl.datamodule.hdf5.HDF5LidarDataModule
epsg: 2154
data_dir: null
split_csv_path: null
hdf5_file_path: null
points_pre_transform:
_target_: functools.partial
_args_:
- ${get_method:myria3d.pctl.points_pre_transform.lidar_hd.lidar_hd_pre_transform}
pre_filter:
_target_: functools.partial
_args_:
- ${get_method:myria3d.pctl.dataset.utils.pre_filter_below_n_points}
min_num_nodes: 1
tile_width: 1000
subtile_width: 50
subtile_overlap_predict: ${predict.subtile_overlap}
batch_size: 10
num_workers: 3
prefetch_factor: 3
dataset_description:
_convert_: all
classification_preprocessing_dict:
3: 5
4: 5
66: 65
classification_dict:
1: unclassified
2: ground
5: vegetation
6: building
9: water
17: bridge
64: lasting_above
d_in: 9
num_classes: 7
callbacks:
log_code:
_target_: myria3d.callbacks.comet_callbacks.LogCode
code_dir: ${work_dir}/myria3d
log_logs_dir:
_target_: myria3d.callbacks.comet_callbacks.LogLogsPath
lr_monitor:
_target_: pytorch_lightning.callbacks.LearningRateMonitor
logging_interval: step
log_momentum: true
model_checkpoint:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
monitor: val/loss_epoch
mode: min
save_top_k: 1
save_last: true
verbose: true
dirpath: checkpoints/
filename: epoch_{epoch:03d}
auto_insert_metric_name: false
early_stopping:
_target_: pytorch_lightning.callbacks.EarlyStopping
monitor: val/loss_epoch
mode: min
patience: 6
min_delta: 0
model:
_target_: myria3d.models.model.Model
d_in: ${dataset_description.d_in}
num_classes: ${dataset_description.num_classes}
classification_dict: ${dataset_description.classification_dict}
ckpt_path: FRACTAL-LidarHD_7cl_randlanet.ckpt
neural_net_class_name: PyGRandLANet
neural_net_hparams:
num_features: ${model.d_in}
num_classes: ${model.num_classes}
num_neighbors: 16
decimation: 4
return_logits: true
interpolation_k: ${predict.interpolator.interpolation_k}
num_workers: 4
logger:
comet:
_target_: pytorch_lightning.loggers.comet.CometLogger
api_key: ${oc.env:COMET_API_TOKEN}
workspace: ${oc.env:COMET_WORKSPACE}
project_name: ${oc.env:COMET_PROJECT_NAME}
experiment_name: DATAPAPER-LidarHD-20240416_100k_fractal-6GPUs
auto_log_co2: false
disabled: false
task:
task_name: predict
predict:
src_las: /path/to/input.las
output_dir: /path/to/output_dir/
ckpt_path: FRACTAL-LidarHD_7cl_randlanet.ckpt
gpus: 0
subtile_overlap: 0
interpolator:
_target_: myria3d.models.interpolation.Interpolator
interpolation_k: 10
classification_dict: ${dataset_description.classification_dict}
probas_to_save: [building,ground]
predicted_classification_channel: PredictedClassification
entropy_channel: entropy