Rename FRACTAL-LidarHD_7cl_randlanet-inference-Myria3DV3.3.yaml to FRACTAL-LidarHD_7cl_randlanet-inference-Myria3DV3.8.yaml
30fc749
verified
seed: 12345 | |
work_dir: ${hydra:runtime.cwd} | |
debug: false | |
print_config: true | |
ignore_warnings: true | |
datamodule: | |
transforms: | |
preparations: | |
eval: | |
TargetTransform: | |
_target_: myria3d.pctl.transforms.transforms.TargetTransform | |
_args_: | |
- ${dataset_description.classification_preprocessing_dict} | |
- ${dataset_description.classification_dict} | |
DropPointsByClass: | |
_target_: myria3d.pctl.transforms.transforms.DropPointsByClass | |
CopyFullPos: | |
_target_: myria3d.pctl.transforms.transforms.CopyFullPos | |
CopyFullPreparedTargets: | |
_target_: myria3d.pctl.transforms.transforms.CopyFullPreparedTargets | |
GridSampling: | |
_target_: torch_geometric.transforms.GridSampling | |
_args_: | |
- 0.25 | |
MinimumNumNodes: | |
_target_: myria3d.pctl.transforms.transforms.MinimumNumNodes | |
_args_: | |
- 300 | |
MaximumNumNodes: | |
_target_: myria3d.pctl.transforms.transforms.MaximumNumNodes | |
_args_: | |
- 40000 | |
CopySampledPos: | |
_target_: myria3d.pctl.transforms.transforms.CopySampledPos | |
Center: | |
_target_: torch_geometric.transforms.Center | |
predict: | |
DropPointsByClass: | |
_target_: myria3d.pctl.transforms.transforms.DropPointsByClass | |
CopyFullPos: | |
_target_: myria3d.pctl.transforms.transforms.CopyFullPos | |
GridSampling: | |
_target_: torch_geometric.transforms.GridSampling | |
_args_: | |
- 0.25 | |
MinimumNumNodes: | |
_target_: myria3d.pctl.transforms.transforms.MinimumNumNodes | |
_args_: | |
- 300 | |
MaximumNumNodes: | |
_target_: myria3d.pctl.transforms.transforms.MaximumNumNodes | |
_args_: | |
- 40000 | |
CopySampledPos: | |
_target_: myria3d.pctl.transforms.transforms.CopySampledPos | |
Center: | |
_target_: torch_geometric.transforms.Center | |
normalizations: | |
NullifyLowestZ: | |
_target_: myria3d.pctl.transforms.transforms.NullifyLowestZ | |
NormalizePos: | |
_target_: myria3d.pctl.transforms.transforms.NormalizePos | |
subtile_width: ${datamodule.subtile_width} | |
StandardizeRGBAndIntensity: | |
_target_: myria3d.pctl.transforms.transforms.StandardizeRGBAndIntensity | |
preparations_eval_list: '${oc.dict.values: datamodule.transforms.preparations.eval}' | |
preparations_predict_list: '${oc.dict.values: datamodule.transforms.preparations.predict}' | |
normalizations_list: '${oc.dict.values: datamodule.transforms.normalizations}' | |
_target_: myria3d.pctl.datamodule.hdf5.HDF5LidarDataModule | |
epsg: 2154 | |
data_dir: null | |
split_csv_path: null | |
hdf5_file_path: null | |
points_pre_transform: | |
_target_: functools.partial | |
_args_: | |
- ${get_method:myria3d.pctl.points_pre_transform.lidar_hd.lidar_hd_pre_transform} | |
pre_filter: | |
_target_: functools.partial | |
_args_: | |
- ${get_method:myria3d.pctl.dataset.utils.pre_filter_below_n_points} | |
min_num_nodes: 1 | |
tile_width: 1000 | |
subtile_width: 50 | |
subtile_overlap_predict: ${predict.subtile_overlap} | |
batch_size: 10 | |
num_workers: 3 | |
prefetch_factor: 3 | |
dataset_description: | |
_convert_: all | |
classification_preprocessing_dict: | |
3: 5 | |
4: 5 | |
66: 65 | |
classification_dict: | |
1: unclassified | |
2: ground | |
5: vegetation | |
6: building | |
9: water | |
17: bridge | |
64: lasting_above | |
d_in: 9 | |
num_classes: 7 | |
callbacks: | |
log_code: | |
_target_: myria3d.callbacks.comet_callbacks.LogCode | |
code_dir: ${work_dir}/myria3d | |
log_logs_dir: | |
_target_: myria3d.callbacks.comet_callbacks.LogLogsPath | |
lr_monitor: | |
_target_: pytorch_lightning.callbacks.LearningRateMonitor | |
logging_interval: step | |
log_momentum: true | |
model_checkpoint: | |
_target_: pytorch_lightning.callbacks.ModelCheckpoint | |
monitor: val/loss_epoch | |
mode: min | |
save_top_k: 1 | |
save_last: true | |
verbose: true | |
dirpath: checkpoints/ | |
filename: epoch_{epoch:03d} | |
auto_insert_metric_name: false | |
early_stopping: | |
_target_: pytorch_lightning.callbacks.EarlyStopping | |
monitor: val/loss_epoch | |
mode: min | |
patience: 6 | |
min_delta: 0 | |
model: | |
_target_: myria3d.models.model.Model | |
d_in: ${dataset_description.d_in} | |
num_classes: ${dataset_description.num_classes} | |
classification_dict: ${dataset_description.classification_dict} | |
ckpt_path: FRACTAL-LidarHD_7cl_randlanet.ckpt | |
neural_net_class_name: PyGRandLANet | |
neural_net_hparams: | |
num_features: ${model.d_in} | |
num_classes: ${model.num_classes} | |
num_neighbors: 16 | |
decimation: 4 | |
return_logits: true | |
interpolation_k: ${predict.interpolator.interpolation_k} | |
num_workers: 4 | |
logger: | |
comet: | |
_target_: pytorch_lightning.loggers.comet.CometLogger | |
api_key: ${oc.env:COMET_API_TOKEN} | |
workspace: ${oc.env:COMET_WORKSPACE} | |
project_name: ${oc.env:COMET_PROJECT_NAME} | |
experiment_name: DATAPAPER-LidarHD-20240416_100k_fractal-6GPUs | |
auto_log_co2: false | |
disabled: false | |
task: | |
task_name: predict | |
predict: | |
src_las: /path/to/input.las | |
output_dir: /path/to/output_dir/ | |
ckpt_path: FRACTAL-LidarHD_7cl_randlanet.ckpt | |
gpus: 0 | |
subtile_overlap: 0 | |
interpolator: | |
_target_: myria3d.models.interpolation.Interpolator | |
interpolation_k: 10 | |
classification_dict: ${dataset_description.classification_dict} | |
probas_to_save: [building,ground] | |
predicted_classification_channel: PredictedClassification | |
entropy_channel: entropy | |