|
seed: 12345 |
|
work_dir: ${hydra:runtime.cwd} |
|
debug: false |
|
print_config: true |
|
ignore_warnings: true |
|
datamodule: |
|
transforms: |
|
preparations: |
|
eval: |
|
TargetTransform: |
|
_target_: myria3d.pctl.transforms.transforms.TargetTransform |
|
_args_: |
|
- ${dataset_description.classification_preprocessing_dict} |
|
- ${dataset_description.classification_dict} |
|
DropPointsByClass: |
|
_target_: myria3d.pctl.transforms.transforms.DropPointsByClass |
|
CopyFullPos: |
|
_target_: myria3d.pctl.transforms.transforms.CopyFullPos |
|
CopyFullPreparedTargets: |
|
_target_: myria3d.pctl.transforms.transforms.CopyFullPreparedTargets |
|
GridSampling: |
|
_target_: torch_geometric.transforms.GridSampling |
|
_args_: |
|
- 0.25 |
|
MinimumNumNodes: |
|
_target_: myria3d.pctl.transforms.transforms.MinimumNumNodes |
|
_args_: |
|
- 300 |
|
MaximumNumNodes: |
|
_target_: myria3d.pctl.transforms.transforms.MaximumNumNodes |
|
_args_: |
|
- 40000 |
|
CopySampledPos: |
|
_target_: myria3d.pctl.transforms.transforms.CopySampledPos |
|
Center: |
|
_target_: torch_geometric.transforms.Center |
|
predict: |
|
DropPointsByClass: |
|
_target_: myria3d.pctl.transforms.transforms.DropPointsByClass |
|
CopyFullPos: |
|
_target_: myria3d.pctl.transforms.transforms.CopyFullPos |
|
GridSampling: |
|
_target_: torch_geometric.transforms.GridSampling |
|
_args_: |
|
- 0.25 |
|
MinimumNumNodes: |
|
_target_: myria3d.pctl.transforms.transforms.MinimumNumNodes |
|
_args_: |
|
- 300 |
|
MaximumNumNodes: |
|
_target_: myria3d.pctl.transforms.transforms.MaximumNumNodes |
|
_args_: |
|
- 40000 |
|
CopySampledPos: |
|
_target_: myria3d.pctl.transforms.transforms.CopySampledPos |
|
Center: |
|
_target_: torch_geometric.transforms.Center |
|
normalizations: |
|
NullifyLowestZ: |
|
_target_: myria3d.pctl.transforms.transforms.NullifyLowestZ |
|
NormalizePos: |
|
_target_: myria3d.pctl.transforms.transforms.NormalizePos |
|
subtile_width: ${datamodule.subtile_width} |
|
StandardizeRGBAndIntensity: |
|
_target_: myria3d.pctl.transforms.transforms.StandardizeRGBAndIntensity |
|
preparations_eval_list: '${oc.dict.values: datamodule.transforms.preparations.eval}' |
|
preparations_predict_list: '${oc.dict.values: datamodule.transforms.preparations.predict}' |
|
normalizations_list: '${oc.dict.values: datamodule.transforms.normalizations}' |
|
_target_: myria3d.pctl.datamodule.hdf5.HDF5LidarDataModule |
|
epsg: 2154 |
|
data_dir: null |
|
split_csv_path: null |
|
hdf5_file_path: null |
|
points_pre_transform: |
|
_target_: functools.partial |
|
_args_: |
|
- ${get_method:myria3d.pctl.points_pre_transform.lidar_hd.lidar_hd_pre_transform} |
|
pre_filter: |
|
_target_: functools.partial |
|
_args_: |
|
- ${get_method:myria3d.pctl.dataset.utils.pre_filter_below_n_points} |
|
min_num_nodes: 1 |
|
tile_width: 1000 |
|
subtile_width: 50 |
|
subtile_overlap_predict: ${predict.subtile_overlap} |
|
batch_size: 10 |
|
num_workers: 3 |
|
prefetch_factor: 3 |
|
dataset_description: |
|
_convert_: all |
|
classification_preprocessing_dict: |
|
3: 5 |
|
4: 5 |
|
66: 65 |
|
classification_dict: |
|
1: unclassified |
|
2: ground |
|
5: vegetation |
|
6: building |
|
9: water |
|
17: bridge |
|
64: lasting_above |
|
d_in: 9 |
|
num_classes: 7 |
|
callbacks: |
|
log_code: |
|
_target_: myria3d.callbacks.comet_callbacks.LogCode |
|
code_dir: ${work_dir}/myria3d |
|
log_logs_dir: |
|
_target_: myria3d.callbacks.comet_callbacks.LogLogsPath |
|
lr_monitor: |
|
_target_: pytorch_lightning.callbacks.LearningRateMonitor |
|
logging_interval: step |
|
log_momentum: true |
|
model_checkpoint: |
|
_target_: pytorch_lightning.callbacks.ModelCheckpoint |
|
monitor: val/loss_epoch |
|
mode: min |
|
save_top_k: 1 |
|
save_last: true |
|
verbose: true |
|
dirpath: checkpoints/ |
|
filename: epoch_{epoch:03d} |
|
auto_insert_metric_name: false |
|
early_stopping: |
|
_target_: pytorch_lightning.callbacks.EarlyStopping |
|
monitor: val/loss_epoch |
|
mode: min |
|
patience: 6 |
|
min_delta: 0 |
|
model: |
|
_target_: myria3d.models.model.Model |
|
d_in: ${dataset_description.d_in} |
|
num_classes: ${dataset_description.num_classes} |
|
classification_dict: ${dataset_description.classification_dict} |
|
ckpt_path: FRACTAL-LidarHD_7cl_randlanet.ckpt |
|
neural_net_class_name: PyGRandLANet |
|
neural_net_hparams: |
|
num_features: ${model.d_in} |
|
num_classes: ${model.num_classes} |
|
num_neighbors: 16 |
|
decimation: 4 |
|
return_logits: true |
|
interpolation_k: ${predict.interpolator.interpolation_k} |
|
num_workers: 4 |
|
logger: |
|
comet: |
|
_target_: pytorch_lightning.loggers.comet.CometLogger |
|
api_key: ${oc.env:COMET_API_TOKEN} |
|
workspace: ${oc.env:COMET_WORKSPACE} |
|
project_name: ${oc.env:COMET_PROJECT_NAME} |
|
experiment_name: DATAPAPER-LidarHD-20240416_100k_fractal-6GPUs |
|
auto_log_co2: false |
|
disabled: false |
|
task: |
|
task_name: predict |
|
predict: |
|
src_las: /path/to/input.las |
|
output_dir: /path/to/output_dir/ |
|
ckpt_path: FRACTAL-LidarHD_7cl_randlanet.ckpt |
|
gpus: 0 |
|
subtile_overlap: 0 |
|
interpolator: |
|
_target_: myria3d.models.interpolation.Interpolator |
|
interpolation_k: 10 |
|
classification_dict: ${dataset_description.classification_dict} |
|
probas_to_save: [building,ground] |
|
predicted_classification_channel: PredictedClassification |
|
entropy_channel: entropy |
|
|