roygan commited on
Commit
0a295d5
1 Parent(s): 097d628

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -4
README.md CHANGED
@@ -5,12 +5,13 @@ license: apache-2.0
5
 
6
  tags:
7
  - bart
 
8
  - biomedical
9
 
10
  inference: true
11
 
12
  widget:
13
- - text: ""
14
 
15
  ---
16
  # Yuyuan-Bart-139M, one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM).
@@ -32,13 +33,11 @@ from transformers import BartForConditionalGeneration, BartTokenizer
32
  tokenizer = BartTokenizer.from_pretrained('IDEA-CCNL/Yuyuan-Bart-139M')
33
  model = BartForConditionalGeneration.from_pretrained('IDEA-CCNL/Yuyuan-Bart-139M')
34
 
35
- origin_text = 'Results are presented of measuring fibrinogen fluorescence parameters in temperature range of 20-80 degrees C at different pH of the solution.'
36
- text = 'Results are presented of measuring fibrinogen fluorescence parameters in <mask> range of 20-80 degrees C at different pH of the <mask>.'
37
  input_ids = tokenizer([text], return_tensors="pt")['input_ids']
38
  model.eval()
39
  generated_ids = model.generate(
40
  input_ids=input_ids,
41
- max_length=64,
42
  )
43
  preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids]
44
  print(preds)
 
5
 
6
  tags:
7
  - bart
8
+ - biobart
9
  - biomedical
10
 
11
  inference: true
12
 
13
  widget:
14
+ - text: "Influenza is a <mask> disease."
15
 
16
  ---
17
  # Yuyuan-Bart-139M, one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM).
 
33
  tokenizer = BartTokenizer.from_pretrained('IDEA-CCNL/Yuyuan-Bart-139M')
34
  model = BartForConditionalGeneration.from_pretrained('IDEA-CCNL/Yuyuan-Bart-139M')
35
 
36
+ text = 'Influenza is a <mask> disease.'
 
37
  input_ids = tokenizer([text], return_tensors="pt")['input_ids']
38
  model.eval()
39
  generated_ids = model.generate(
40
  input_ids=input_ids,
 
41
  )
42
  preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids]
43
  print(preds)