suolyer commited on
Commit
b669882
·
1 Parent(s): f32238e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -19
README.md CHANGED
@@ -17,9 +17,9 @@ tags:
17
 
18
  ## 简介 Brief Introduction
19
 
20
- 将自然语言理解任务转化为multiple choice任务,并且使用 48 NLU 任务进行预训练
21
 
22
- Convert natural language understanding tasks into multiple choice tasks, and use 48 NLU task for pre-training
23
 
24
  ## 模型分类 Model Taxonomy
25
 
@@ -33,19 +33,19 @@ Convert natural language understanding tasks into multiple choice tasks, and use
33
 
34
  We propose an new paradigm for zero-shot learners that is input-agnostic, in the sense that it is compatible with any format and applicable to a list of language tasks, such as text classification, commonsense reasoning, coreference resolution, sentiment analysis.
35
  Our approach converts zero-shot learning into multiple choice tasks,
36
- avoiding problems in commonly used large generative models such as FLAN. It not only adds generalization ability to the models, but also reduces the needs of parameters significantly. We demonstrate that this approach leads to state-of-the-art performance on common language benchmarks, and produces satisfactory results on tasks such as natural language inference and text classification. For more details, please refer to our [paper](https://arxiv.org/abs/2210.08590) or [github](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/unimc/)
37
-
38
 
39
  ### 下游效果 Performance
40
 
 
41
  **Few-shot**
42
  | Model | eprstmt | csldcp | tnews | iflytek | ocnli | bustm | chid | csl | wsc | Avg |
43
  |------------|------------|----------|-----------|----------|-----------|-----------|-----------|----------|-----------|-----------|
44
- | Finetuning | 65.4 | 35.5 | 49 | 32.8 | 33 | 60.7 | 14.9 | 50 | 55.6 | 44.1 |
45
- | PET | 86.7 | 51.7 | 54.5 | 46 | 44 | 56 | 61.2 | 59.4 | 57.5 | 57.44 |
46
- | LM-BFF | 85.6 | 54.4 | 53 | 47.1 | 41.6 | 57.6 | 61.2 | 51.7 | 54.7 | 56.32 |
47
- | P-tuning | 88.3 | 56 | 54.2 | **57.6** | 41.9 | 60.9 | 59.3 | **62.9** | 58.1 | 59.91 |
48
- | EFL | 84.9 | 45 | 52.1 | 42.7 | 66.2 | 71.8 | 30.9 | 56.6 | 53 | 55.91 |
49
  | [UniMC-RoBERTa-110M](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-RoBERTa-110M-Chinese) | 88.64 | 54.08 | 54.32 | 48.6 | 66.55 | 73.76 | 67.71 | 52.54 | 59.92 | 62.86 |
50
  | [UniMC-RoBERTa-330M](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-RoBERTa-330M-Chinese) | 89.53 | 57.3 | 54.25 | 50 | 70.59 | 77.49 | 78.09 | 55.73 | 65.16 | 66.46 |
51
  | [UniMC-MegatronBERT-1.3B](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese) | **89.278** | **60.9** | **57.46** | 52.89 | **76.33** | **80.37** | **90.33** | 61.73 | **79.15** | **72.05** |
@@ -54,18 +54,17 @@ avoiding problems in commonly used large generative models such as FLAN. It not
54
 
55
  | Model | eprstmt | csldcp | tnews | iflytek | ocnli | bustm | chid | csl | wsc | Avg |
56
  |---------------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|-----------|-----------|
57
- | GPT-zero | 57.5 | 26.2 | 37 | 19 | 34.4 | 50 | 65.6 | 50.1 | 50.3 | 43.4 |
58
- | PET-zero | 85.2 | 12.6 | 26.1 | 26.6 | 40.3 | 50.6 | 57.6 | 52.2 | 54.7 | 45.1 |
59
- | NSP-BERT | 86.9 | 47.6 | 51 | 41.6 | 37.4 | 63.4 | 52 | **64.4** | 59.4 | 55.96 |
60
- | ZeroPrompt | - | - | - | 16.14 | 46.16 | - | - | - | 47.98 | - |
61
- | Yuan1.0-13B | 88.13 | 38.99 | 57.47 | 38.82 | 48.13 | 59.38 | 86.14 | 50 | 38.99 | 56.22 |
62
- | ERNIE3.0-240B | 88.75 | **50.97** | **57.83** | **40.42** | 53.57 | 64.38 | 87.13 | 56.25 | 53.46 | 61.41 |
63
  | [UniMC-RoBERTa-110M](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-RoBERTa-110M-Chinese) | 86.16 | 31.26 | 46.61 | 26.54 | 66.91 | 73.34 | 66.68 | 50.09 | 53.66 | 55.7 |
64
  | [UniMC-RoBERTa-330M](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-RoBERTa-330M-Chinese) | 87.5 | 30.4 | 47.6 | 31.5 | 69.9 | 75.9 | 78.17 | 49.5 | 60.55 | 59.01 |
65
  | [UniMC-MegatronBERT-1.3B](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese) | **88.79** | 42.06 | 55.21 | 33.93 | **75.57** | **79.5** | **89.4** | 50.25 | **66.67** | **64.53** |
66
 
67
 
68
-
69
  ## 使用 Usage
70
  ```shell
71
  git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git
@@ -76,11 +75,11 @@ pip install --editable .
76
 
77
  ```python3
78
  import argparse
79
- from fengshen.pipelines.multiplechoice import UniMCPiplines
80
 
81
 
82
  total_parser = argparse.ArgumentParser("TASK NAME")
83
- total_parser = UniMCPiplines.piplines_args(total_parser)
84
  args = total_parser.parse_args()
85
  args.pretrained_model_path = 'IDEA-CCNL/Erlangshen-UniMC-RoBERTa-330M-Chinese'
86
  args.learning_rate=2e-5
@@ -88,7 +87,7 @@ args.max_length=512
88
  args.max_epochs=3
89
  args.batchsize=8
90
  args.default_root_dir='./'
91
- model = UniMCPiplines(args)
92
 
93
  train_data = []
94
  dev_data = []
 
17
 
18
  ## 简介 Brief Introduction
19
 
20
+ UniMC 核心思想是将自然语言理解任务转化为 multiple choice 任务,并且使用多个 NLU 任务来进行预训练。我们在英文数据集实验结果表明仅含有 2.35 亿参数的 [ALBERT模型](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-Albert-235M-English)的zero-shot性能可以超越众多千亿的模型。并在中文测评基准 FewCLUE 和 ZeroCLUE 两个榜单中,13亿的[二郎神](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese)获得了第一的成绩。
21
 
22
+ The core idea of UniMC is to convert natural language understanding tasks into multiple choice tasks and use multiple NLU tasks for pre-training. Our experimental results on the English dataset show that the zero-shot performance of a [ALBERT](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-Albert-235M-English) model with only 235 million parameters can surpass that of many hundreds of billions of models. And in the Chinese evaluation benchmarks FewCLUE and ZeroCLUE two lists, 1.3 billion [Erlangshen](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese) won the first result.
23
 
24
  ## 模型分类 Model Taxonomy
25
 
 
33
 
34
  We propose an new paradigm for zero-shot learners that is input-agnostic, in the sense that it is compatible with any format and applicable to a list of language tasks, such as text classification, commonsense reasoning, coreference resolution, sentiment analysis.
35
  Our approach converts zero-shot learning into multiple choice tasks,
36
+ avoiding problems in commonly used large generative models such as FLAN. It not only adds generalization ability to the models, but also reduces the needs of parameters significantly. We demonstrate that this approach leads to state-of-the-art performance on common language benchmarks, and produces satisfactory results on tasks such as natural language inference and text classification. For more details, please refer to our [paper](https://arxiv.org/abs/2210.08590) or [github](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/unimc/)
 
37
 
38
  ### 下游效果 Performance
39
 
40
+
41
  **Few-shot**
42
  | Model | eprstmt | csldcp | tnews | iflytek | ocnli | bustm | chid | csl | wsc | Avg |
43
  |------------|------------|----------|-----------|----------|-----------|-----------|-----------|----------|-----------|-----------|
44
+ | [FineTuning](https://arxiv.org/pdf/2107.07498.pdf)-RoBERTa-110M | 65.4 | 35.5 | 49 | 32.8 | 33 | 60.7 | 14.9 | 50 | 55.6 | 44.1 |
45
+ | [FineTuning](https://arxiv.org/pdf/2107.07498.pdf)-ERNIE1.0-110M | 66.5 | 57 | 516 | 42.1 | 32 | 60.4 | 15 | 60.1 | 50.3 | 48.34 |
46
+ | [PET](https://arxiv.org/pdf/2107.07498.pdf)-ERNIE1.0-110M | 84 | 59.9 | 56.4 | 50.3 | 38.1 | 58.4 | 40.6 | 61.1 | 58.7 | 56.39 |
47
+ | [P-tuning](https://arxiv.org/pdf/2107.07498.pdf)-ERNIE1.0-110M | 80.6 | 56.6 | 55.9 | 52.6 | 35.7 | 60.8 | 39.61 | 51.8 | 55.7 | 54.37 |
48
+ | [EFL](https://arxiv.org/pdf/2107.07498.pdf)-ERNIE1.0-110M | 76.7 | 47.9 | 56.3 | 52.1 | 48.7 | 54.6 | 30.3 | 52.8 | 52.3 | 52.7 |
49
  | [UniMC-RoBERTa-110M](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-RoBERTa-110M-Chinese) | 88.64 | 54.08 | 54.32 | 48.6 | 66.55 | 73.76 | 67.71 | 52.54 | 59.92 | 62.86 |
50
  | [UniMC-RoBERTa-330M](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-RoBERTa-330M-Chinese) | 89.53 | 57.3 | 54.25 | 50 | 70.59 | 77.49 | 78.09 | 55.73 | 65.16 | 66.46 |
51
  | [UniMC-MegatronBERT-1.3B](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese) | **89.278** | **60.9** | **57.46** | 52.89 | **76.33** | **80.37** | **90.33** | 61.73 | **79.15** | **72.05** |
 
54
 
55
  | Model | eprstmt | csldcp | tnews | iflytek | ocnli | bustm | chid | csl | wsc | Avg |
56
  |---------------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|-----------|-----------|
57
+ | [GPT](https://arxiv.org/pdf/2107.07498.pdf)-110M | 57.5 | 26.2 | 37 | 19 | 34.4 | 50 | 65.6 | 50.1 | 50.3 | 43.4 |
58
+ | [PET](https://arxiv.org/pdf/2107.07498.pdf)-RoBERTa-110M | 85.2 | 12.6 | 26.1 | 26.6 | 40.3 | 50.6 | 57.6 | 52.2 | 54.7 | 45.1 |
59
+ | [NSP-BERT](https://arxiv.org/abs/2109.03564)-110M | 86.9 | 47.6 | 51 | 41.6 | 37.4 | 63.4 | 52 | **64.4** | 59.4 | 55.96 |
60
+ | [ZeroPrompt](https://arxiv.org/abs/2201.06910)-T5-1.5B | - | - | - | 16.14 | 46.16 | - | - | - | 47.98 | - |
61
+ | [Yuan1.0-13B](https://arxiv.org/abs/2110.04725) | 88.13 | 38.99 | 57.47 | 38.82 | 48.13 | 59.38 | 86.14 | 50 | 38.99 | 56.22 |
62
+ | [ERNIE3.0-240B](https://arxiv.org/abs/2107.02137) | 88.75 | **50.97** | **57.83** | **40.42** | 53.57 | 64.38 | 87.13 | 56.25 | 53.46 | 61.41 |
63
  | [UniMC-RoBERTa-110M](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-RoBERTa-110M-Chinese) | 86.16 | 31.26 | 46.61 | 26.54 | 66.91 | 73.34 | 66.68 | 50.09 | 53.66 | 55.7 |
64
  | [UniMC-RoBERTa-330M](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-RoBERTa-330M-Chinese) | 87.5 | 30.4 | 47.6 | 31.5 | 69.9 | 75.9 | 78.17 | 49.5 | 60.55 | 59.01 |
65
  | [UniMC-MegatronBERT-1.3B](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese) | **88.79** | 42.06 | 55.21 | 33.93 | **75.57** | **79.5** | **89.4** | 50.25 | **66.67** | **64.53** |
66
 
67
 
 
68
  ## 使用 Usage
69
  ```shell
70
  git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git
 
75
 
76
  ```python3
77
  import argparse
78
+ from fengshen.pipelines.multiplechoice import UniMCPipelines
79
 
80
 
81
  total_parser = argparse.ArgumentParser("TASK NAME")
82
+ total_parser = UniMCPipelines.piplines_args(total_parser)
83
  args = total_parser.parse_args()
84
  args.pretrained_model_path = 'IDEA-CCNL/Erlangshen-UniMC-RoBERTa-330M-Chinese'
85
  args.learning_rate=2e-5
 
87
  args.max_epochs=3
88
  args.batchsize=8
89
  args.default_root_dir='./'
90
+ model = UniMCPipelines(args)
91
 
92
  train_data = []
93
  dev_data = []