vision-bnn-benchmarks-hf / functions.py
sonebu
update emails
4e45d68
###########################################################################
# Computer vision - Binary neural networks demo software by HyperbeeAI. #
# Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. hello@hyperbee.ai #
###########################################################################
import torch, sys
import torch.nn as nn
from torch.autograd import Function
###################################################
### Quantization Functions
### backward passes are straight through
## Up-Down (ud) quantization for wide last layer ("bigdata"). Used in QAT
class Q_ud_wide(Function):
@staticmethod
def forward(_, x, xb, extrab):
up_factor = 2**(xb-extrab-1)
down_factor = 2**(xb-1)
return x.mul(up_factor).add(.5).floor().div(down_factor)
@staticmethod
def backward(_, x):
return x, None, None
## Up-Down (ud) quantization. Used in QAT
class Q_ud(Function):
@staticmethod
def forward(_, x, xb):
updown_factor = 2**(xb-1)
return x.mul(updown_factor).add(.5).floor().div(updown_factor)
@staticmethod
def backward(_, x):
return x, None
## Up-Down (ud) quantization for antipodal binary. Used in qat-ap
class Q_ud_ap(Function):
@staticmethod
def forward(_, x):
x = torch.sign(x).div(2.0) # antipodal (-1,+1) weights @HW correspond to (-0.5,+0.5) in qat
mask = (x == 0)
return x - mask.type(torch.FloatTensor).to(x.device).div(2.0)
@staticmethod
def backward(_, x):
return x
## Up (u) quantization. Used in Eval/hardware
class Q_u(Function):
@staticmethod
def forward(_, x, xb):
up_factor = 2**(8-xb)
return x.mul(up_factor).add(.5).floor() ### Burak: maxim has a .add(0.5) at the beginning, I think that's wrong
@staticmethod
def backward(_, x):
return x, None
## Down (d) quantization. Used in Eval/hardware
class Q_d(Function):
@staticmethod
def forward(_, x, xb):
down_factor = 2**(xb-1)
return x.div(down_factor).add(.5).floor() ### Burak: maxim has a .add(0.5) at the beginning, I think that's wrong
@staticmethod
def backward(_, x):
return x, None
###################################################
### Quantization module
### ("umbrella" for Functions)
class quantization(nn.Module):
def __init__(self, xb = 8, mode='updown', wide=False):
super().__init__()
self.xb = xb
self.mode = mode
self.wide = wide
def forward(self, x):
if(self.mode=='updown'):
if(self.wide):
return Q_ud_wide.apply(x, self.xb, 1)
else:
return Q_ud.apply(x, self.xb)
elif(self.mode=='down'):
if(self.wide):
return Q_d.apply(x, self.xb + 1)
else:
return Q_d.apply(x, self.xb)
elif(self.mode=='up'):
return Q_u.apply(x, self.xb)
elif(self.mode=='updown_ap'):
return Q_ud_ap.apply(x)
else:
print('wrong quantization mode. exiting')
sys.exit()
###################################################
### Clamping modules
### (doesn't need Functions since backward passes are well-defined)
class clamping_qa(nn.Module):
def __init__(self, xb = 8, wide=False):
super().__init__()
if(wide):
self.min_val = -16384.0
self.max_val = 16383.0
else:
self.min_val = -1.0
self.max_val = (2**(xb-1)-1)/(2**(xb-1))
def forward(self, x):
return x.clamp(min=self.min_val, max=self.max_val)
class clamping_hw(nn.Module):
def __init__(self, xb = 8, wide=False):
super().__init__()
if(wide):
self.min_val = -2**(30-1)
self.max_val = 2**(30-1)-1
else:
self.min_val = -2**(xb-1)
self.max_val = 2**(xb-1)-1
def forward(self, x):
return x.clamp(min=self.min_val, max=self.max_val)
###################################################
### Computing output_shift, i.e., "los"
def calc_out_shift(weight, bias, shift_quantile):
bias_r = torch.flatten(bias)
weight_r = torch.flatten(weight)
params_r = torch.cat((weight_r, bias_r))
limit = torch.quantile(params_r.abs(), shift_quantile)
return -(1./limit).log2().floor().clamp(min=-15., max=15.)