mistralic-expert-16 / checkpoint-400 /trainer_state.json
pharaouk's picture
Training in progress, step 400, checkpoint
e28d8cb
raw
history blame
12.5 kB
{
"best_metric": 0.7457320690155029,
"best_model_checkpoint": "experts/mistralic-expert-16/checkpoint-400",
"epoch": 0.1267427122940431,
"eval_steps": 200,
"global_step": 400,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.0,
"learning_rate": 0.0002,
"loss": 0.7873,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.8128,
"step": 20
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.8641,
"step": 30
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.8246,
"step": 40
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7867,
"step": 50
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7705,
"step": 60
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7671,
"step": 70
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8725,
"step": 80
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8337,
"step": 90
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7819,
"step": 100
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7729,
"step": 110
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.8169,
"step": 120
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7988,
"step": 130
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.8958,
"step": 140
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7682,
"step": 150
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7729,
"step": 160
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7375,
"step": 170
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7756,
"step": 180
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8256,
"step": 190
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8504,
"step": 200
},
{
"epoch": 0.06,
"eval_loss": 0.7519773244857788,
"eval_runtime": 153.135,
"eval_samples_per_second": 6.53,
"eval_steps_per_second": 3.265,
"step": 200
},
{
"epoch": 0.06,
"mmlu_eval_accuracy": 0.5986624199855438,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.42857142857142855,
"mmlu_eval_accuracy_astronomy": 0.6875,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.5862068965517241,
"mmlu_eval_accuracy_college_biology": 0.5625,
"mmlu_eval_accuracy_college_chemistry": 0.375,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.6363636363636364,
"mmlu_eval_accuracy_college_medicine": 0.6363636363636364,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.5454545454545454,
"mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384,
"mmlu_eval_accuracy_econometrics": 0.5833333333333334,
"mmlu_eval_accuracy_electrical_engineering": 0.625,
"mmlu_eval_accuracy_elementary_mathematics": 0.43902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.59375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.8333333333333334,
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.6046511627906976,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5769230769230769,
"mmlu_eval_accuracy_high_school_physics": 0.23529411764705882,
"mmlu_eval_accuracy_high_school_psychology": 0.85,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.9230769230769231,
"mmlu_eval_accuracy_jurisprudence": 0.6363636363636364,
"mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
"mmlu_eval_accuracy_machine_learning": 0.45454545454545453,
"mmlu_eval_accuracy_management": 0.9090909090909091,
"mmlu_eval_accuracy_marketing": 0.88,
"mmlu_eval_accuracy_medical_genetics": 1.0,
"mmlu_eval_accuracy_miscellaneous": 0.7558139534883721,
"mmlu_eval_accuracy_moral_disputes": 0.5526315789473685,
"mmlu_eval_accuracy_moral_scenarios": 0.27,
"mmlu_eval_accuracy_nutrition": 0.696969696969697,
"mmlu_eval_accuracy_philosophy": 0.7647058823529411,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.6451612903225806,
"mmlu_eval_accuracy_professional_law": 0.4,
"mmlu_eval_accuracy_professional_medicine": 0.6129032258064516,
"mmlu_eval_accuracy_professional_psychology": 0.6231884057971014,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.6296296296296297,
"mmlu_eval_accuracy_sociology": 0.8181818181818182,
"mmlu_eval_accuracy_us_foreign_policy": 0.9090909090909091,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.8421052631578947,
"mmlu_loss": 1.2932990876174781,
"step": 200
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.823,
"step": 210
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8241,
"step": 220
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8277,
"step": 230
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.8068,
"step": 240
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.7698,
"step": 250
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.8068,
"step": 260
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.7913,
"step": 270
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8086,
"step": 280
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8127,
"step": 290
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7804,
"step": 300
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7667,
"step": 310
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.757,
"step": 320
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7438,
"step": 330
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.768,
"step": 340
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.8151,
"step": 350
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.7718,
"step": 360
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7903,
"step": 370
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7447,
"step": 380
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7712,
"step": 390
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.7808,
"step": 400
},
{
"epoch": 0.13,
"eval_loss": 0.7457320690155029,
"eval_runtime": 152.8304,
"eval_samples_per_second": 6.543,
"eval_steps_per_second": 3.272,
"step": 400
},
{
"epoch": 0.13,
"mmlu_eval_accuracy": 0.5941853117334526,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.75,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.6206896551724138,
"mmlu_eval_accuracy_college_biology": 0.5625,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.5454545454545454,
"mmlu_eval_accuracy_college_medicine": 0.6363636363636364,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.7272727272727273,
"mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384,
"mmlu_eval_accuracy_econometrics": 0.5,
"mmlu_eval_accuracy_electrical_engineering": 0.5625,
"mmlu_eval_accuracy_elementary_mathematics": 0.4634146341463415,
"mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.625,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7619047619047619,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.6046511627906976,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.6923076923076923,
"mmlu_eval_accuracy_high_school_physics": 0.17647058823529413,
"mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_world_history": 0.6538461538461539,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 1.0,
"mmlu_eval_accuracy_jurisprudence": 0.6363636363636364,
"mmlu_eval_accuracy_logical_fallacies": 0.7222222222222222,
"mmlu_eval_accuracy_machine_learning": 0.5454545454545454,
"mmlu_eval_accuracy_management": 0.9090909090909091,
"mmlu_eval_accuracy_marketing": 0.88,
"mmlu_eval_accuracy_medical_genetics": 1.0,
"mmlu_eval_accuracy_miscellaneous": 0.7441860465116279,
"mmlu_eval_accuracy_moral_disputes": 0.6052631578947368,
"mmlu_eval_accuracy_moral_scenarios": 0.32,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.7058823529411765,
"mmlu_eval_accuracy_prehistory": 0.6285714285714286,
"mmlu_eval_accuracy_professional_accounting": 0.5483870967741935,
"mmlu_eval_accuracy_professional_law": 0.4294117647058823,
"mmlu_eval_accuracy_professional_medicine": 0.6129032258064516,
"mmlu_eval_accuracy_professional_psychology": 0.5797101449275363,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.8181818181818182,
"mmlu_eval_accuracy_us_foreign_policy": 0.8181818181818182,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.8421052631578947,
"mmlu_loss": 1.0765447558606573,
"step": 400
}
],
"logging_steps": 10,
"max_steps": 9468,
"num_train_epochs": 3,
"save_steps": 200,
"total_flos": 2.446105870364836e+17,
"trial_name": null,
"trial_params": null
}