pharaouk's picture
Training in progress, step 1000, checkpoint
7c6fe14
raw
history blame
30.6 kB
{
"best_metric": 0.7300029397010803,
"best_model_checkpoint": "experts/mistralic-expert-15/checkpoint-1000",
"epoch": 0.32859607327692436,
"eval_steps": 200,
"global_step": 1000,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.0,
"learning_rate": 0.0002,
"loss": 0.8512,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7338,
"step": 20
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7805,
"step": 30
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7586,
"step": 40
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7571,
"step": 50
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.8492,
"step": 60
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.8117,
"step": 70
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7952,
"step": 80
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8803,
"step": 90
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8204,
"step": 100
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.786,
"step": 110
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.8291,
"step": 120
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7895,
"step": 130
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.8262,
"step": 140
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.8268,
"step": 150
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.8834,
"step": 160
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7672,
"step": 170
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7865,
"step": 180
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8137,
"step": 190
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.7671,
"step": 200
},
{
"epoch": 0.07,
"eval_loss": 0.7465175986289978,
"eval_runtime": 133.0528,
"eval_samples_per_second": 7.516,
"eval_steps_per_second": 3.758,
"step": 200
},
{
"epoch": 0.07,
"mmlu_eval_accuracy": 0.5902724593152844,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.8125,
"mmlu_eval_accuracy_business_ethics": 0.7272727272727273,
"mmlu_eval_accuracy_clinical_knowledge": 0.5862068965517241,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.45454545454545453,
"mmlu_eval_accuracy_college_medicine": 0.6363636363636364,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.6363636363636364,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.5,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.43902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.07142857142857142,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.5625,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.5813953488372093,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.6153846153846154,
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
"mmlu_eval_accuracy_high_school_psychology": 0.85,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 1.0,
"mmlu_eval_accuracy_jurisprudence": 0.6363636363636364,
"mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
"mmlu_eval_accuracy_machine_learning": 0.5454545454545454,
"mmlu_eval_accuracy_management": 0.9090909090909091,
"mmlu_eval_accuracy_marketing": 0.88,
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
"mmlu_eval_accuracy_miscellaneous": 0.7558139534883721,
"mmlu_eval_accuracy_moral_disputes": 0.5526315789473685,
"mmlu_eval_accuracy_moral_scenarios": 0.37,
"mmlu_eval_accuracy_nutrition": 0.696969696969697,
"mmlu_eval_accuracy_philosophy": 0.7647058823529411,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.6129032258064516,
"mmlu_eval_accuracy_professional_law": 0.3941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.6451612903225806,
"mmlu_eval_accuracy_professional_psychology": 0.5942028985507246,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.6296296296296297,
"mmlu_eval_accuracy_sociology": 0.8181818181818182,
"mmlu_eval_accuracy_us_foreign_policy": 0.9090909090909091,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7894736842105263,
"mmlu_loss": 1.3589041333441323,
"step": 200
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8347,
"step": 210
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8393,
"step": 220
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.8098,
"step": 230
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.7982,
"step": 240
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.7871,
"step": 250
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8817,
"step": 260
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8185,
"step": 270
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8334,
"step": 280
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.8398,
"step": 290
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7625,
"step": 300
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7923,
"step": 310
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.8421,
"step": 320
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.8105,
"step": 330
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.8017,
"step": 340
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7675,
"step": 350
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7919,
"step": 360
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7954,
"step": 370
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.8182,
"step": 380
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.8229,
"step": 390
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.8335,
"step": 400
},
{
"epoch": 0.13,
"eval_loss": 0.7395919561386108,
"eval_runtime": 132.8292,
"eval_samples_per_second": 7.528,
"eval_steps_per_second": 3.764,
"step": 400
},
{
"epoch": 0.13,
"mmlu_eval_accuracy": 0.6007241471030027,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.75,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.5517241379310345,
"mmlu_eval_accuracy_college_biology": 0.625,
"mmlu_eval_accuracy_college_chemistry": 0.375,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.5454545454545454,
"mmlu_eval_accuracy_college_medicine": 0.5909090909090909,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.6363636363636364,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.5,
"mmlu_eval_accuracy_electrical_engineering": 0.5625,
"mmlu_eval_accuracy_elementary_mathematics": 0.43902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.53125,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7619047619047619,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.6744186046511628,
"mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069,
"mmlu_eval_accuracy_high_school_microeconomics": 0.6538461538461539,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.6538461538461539,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.9230769230769231,
"mmlu_eval_accuracy_jurisprudence": 0.6363636363636364,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.5454545454545454,
"mmlu_eval_accuracy_management": 0.9090909090909091,
"mmlu_eval_accuracy_marketing": 0.92,
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
"mmlu_eval_accuracy_miscellaneous": 0.7558139534883721,
"mmlu_eval_accuracy_moral_disputes": 0.6578947368421053,
"mmlu_eval_accuracy_moral_scenarios": 0.31,
"mmlu_eval_accuracy_nutrition": 0.7575757575757576,
"mmlu_eval_accuracy_philosophy": 0.6470588235294118,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.6129032258064516,
"mmlu_eval_accuracy_professional_law": 0.38823529411764707,
"mmlu_eval_accuracy_professional_medicine": 0.6774193548387096,
"mmlu_eval_accuracy_professional_psychology": 0.6376811594202898,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.7037037037037037,
"mmlu_eval_accuracy_sociology": 0.8636363636363636,
"mmlu_eval_accuracy_us_foreign_policy": 0.8181818181818182,
"mmlu_eval_accuracy_virology": 0.6111111111111112,
"mmlu_eval_accuracy_world_religions": 0.9473684210526315,
"mmlu_loss": 1.0392796968550035,
"step": 400
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.8139,
"step": 410
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8146,
"step": 420
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8034,
"step": 430
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.7941,
"step": 440
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.7994,
"step": 450
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.7466,
"step": 460
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.8536,
"step": 470
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.805,
"step": 480
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.8393,
"step": 490
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.7814,
"step": 500
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.824,
"step": 510
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.8338,
"step": 520
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.8008,
"step": 530
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7993,
"step": 540
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7893,
"step": 550
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7627,
"step": 560
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.8679,
"step": 570
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.7836,
"step": 580
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.7854,
"step": 590
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.789,
"step": 600
},
{
"epoch": 0.2,
"eval_loss": 0.7367475628852844,
"eval_runtime": 132.8557,
"eval_samples_per_second": 7.527,
"eval_steps_per_second": 3.763,
"step": 600
},
{
"epoch": 0.2,
"mmlu_eval_accuracy": 0.594293155214947,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.8125,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.5862068965517241,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.375,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.6363636363636364,
"mmlu_eval_accuracy_college_medicine": 0.5909090909090909,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.5454545454545454,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.5,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.5121951219512195,
"mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.53125,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7619047619047619,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.6046511627906976,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.6153846153846154,
"mmlu_eval_accuracy_high_school_physics": 0.17647058823529413,
"mmlu_eval_accuracy_high_school_psychology": 0.8166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.4782608695652174,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 1.0,
"mmlu_eval_accuracy_jurisprudence": 0.6363636363636364,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.45454545454545453,
"mmlu_eval_accuracy_management": 0.9090909090909091,
"mmlu_eval_accuracy_marketing": 0.92,
"mmlu_eval_accuracy_medical_genetics": 0.8181818181818182,
"mmlu_eval_accuracy_miscellaneous": 0.7325581395348837,
"mmlu_eval_accuracy_moral_disputes": 0.631578947368421,
"mmlu_eval_accuracy_moral_scenarios": 0.39,
"mmlu_eval_accuracy_nutrition": 0.7575757575757576,
"mmlu_eval_accuracy_philosophy": 0.6764705882352942,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.5483870967741935,
"mmlu_eval_accuracy_professional_law": 0.38823529411764707,
"mmlu_eval_accuracy_professional_medicine": 0.6129032258064516,
"mmlu_eval_accuracy_professional_psychology": 0.6231884057971014,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.7037037037037037,
"mmlu_eval_accuracy_sociology": 0.8636363636363636,
"mmlu_eval_accuracy_us_foreign_policy": 0.8181818181818182,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.8421052631578947,
"mmlu_loss": 1.1680357199813927,
"step": 600
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.7913,
"step": 610
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.8255,
"step": 620
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.8075,
"step": 630
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.7866,
"step": 640
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.7553,
"step": 650
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.8378,
"step": 660
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.8303,
"step": 670
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.8294,
"step": 680
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.7974,
"step": 690
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.837,
"step": 700
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.8102,
"step": 710
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.7953,
"step": 720
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.841,
"step": 730
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.8219,
"step": 740
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.7431,
"step": 750
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.7249,
"step": 760
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.8422,
"step": 770
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.8637,
"step": 780
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.7363,
"step": 790
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.7515,
"step": 800
},
{
"epoch": 0.26,
"eval_loss": 0.7350410223007202,
"eval_runtime": 132.8114,
"eval_samples_per_second": 7.529,
"eval_steps_per_second": 3.765,
"step": 800
},
{
"epoch": 0.26,
"mmlu_eval_accuracy": 0.5862496128506853,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.75,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.5517241379310345,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.6363636363636364,
"mmlu_eval_accuracy_college_medicine": 0.5909090909090909,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.5454545454545454,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.4166666666666667,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.43902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.5625,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.8333333333333334,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7619047619047619,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.6511627906976745,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.6538461538461539,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.8333333333333334,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.6538461538461539,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.9230769230769231,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.45454545454545453,
"mmlu_eval_accuracy_management": 0.9090909090909091,
"mmlu_eval_accuracy_marketing": 0.92,
"mmlu_eval_accuracy_medical_genetics": 0.8181818181818182,
"mmlu_eval_accuracy_miscellaneous": 0.7209302325581395,
"mmlu_eval_accuracy_moral_disputes": 0.6052631578947368,
"mmlu_eval_accuracy_moral_scenarios": 0.4,
"mmlu_eval_accuracy_nutrition": 0.7878787878787878,
"mmlu_eval_accuracy_philosophy": 0.6176470588235294,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.5161290322580645,
"mmlu_eval_accuracy_professional_law": 0.37058823529411766,
"mmlu_eval_accuracy_professional_medicine": 0.6129032258064516,
"mmlu_eval_accuracy_professional_psychology": 0.6376811594202898,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.7407407407407407,
"mmlu_eval_accuracy_sociology": 0.9090909090909091,
"mmlu_eval_accuracy_us_foreign_policy": 0.8181818181818182,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.8421052631578947,
"mmlu_loss": 1.2610168881889423,
"step": 800
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.7708,
"step": 810
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.7835,
"step": 820
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.7705,
"step": 830
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.8067,
"step": 840
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.789,
"step": 850
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.7876,
"step": 860
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.8059,
"step": 870
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.8219,
"step": 880
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.7654,
"step": 890
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.8648,
"step": 900
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.7738,
"step": 910
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.7952,
"step": 920
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.8421,
"step": 930
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.7871,
"step": 940
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.7859,
"step": 950
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.8222,
"step": 960
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.778,
"step": 970
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.8145,
"step": 980
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.7729,
"step": 990
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.7829,
"step": 1000
},
{
"epoch": 0.33,
"eval_loss": 0.7300029397010803,
"eval_runtime": 132.8403,
"eval_samples_per_second": 7.528,
"eval_steps_per_second": 3.764,
"step": 1000
},
{
"epoch": 0.33,
"mmlu_eval_accuracy": 0.5863749078875924,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.75,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.5862068965517241,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.375,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.5454545454545454,
"mmlu_eval_accuracy_college_medicine": 0.6363636363636364,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.7272727272727273,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.5,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.5121951219512195,
"mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.5625,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222,
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.6511627906976745,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.6538461538461539,
"mmlu_eval_accuracy_high_school_physics": 0.17647058823529413,
"mmlu_eval_accuracy_high_school_psychology": 0.85,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923,
"mmlu_eval_accuracy_human_aging": 0.782608695652174,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 1.0,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.9090909090909091,
"mmlu_eval_accuracy_marketing": 0.92,
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
"mmlu_eval_accuracy_miscellaneous": 0.7209302325581395,
"mmlu_eval_accuracy_moral_disputes": 0.5789473684210527,
"mmlu_eval_accuracy_moral_scenarios": 0.35,
"mmlu_eval_accuracy_nutrition": 0.7272727272727273,
"mmlu_eval_accuracy_philosophy": 0.6764705882352942,
"mmlu_eval_accuracy_prehistory": 0.5714285714285714,
"mmlu_eval_accuracy_professional_accounting": 0.5161290322580645,
"mmlu_eval_accuracy_professional_law": 0.38235294117647056,
"mmlu_eval_accuracy_professional_medicine": 0.5483870967741935,
"mmlu_eval_accuracy_professional_psychology": 0.5797101449275363,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5925925925925926,
"mmlu_eval_accuracy_sociology": 0.8181818181818182,
"mmlu_eval_accuracy_us_foreign_policy": 0.8181818181818182,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.8947368421052632,
"mmlu_loss": 1.334560420821292,
"step": 1000
}
],
"logging_steps": 10,
"max_steps": 9129,
"num_train_epochs": 3,
"save_steps": 200,
"total_flos": 5.3490750465520435e+17,
"trial_name": null,
"trial_params": null
}