transformers-like-implementation (#1)
Browse files- make config similar to transformers except for flash (8d33426853dc8f1b3b5689aecda69055037d7598)
- make processing similar to transformers implementation (60a1dbcdc38421cee543a5bbb16517402f64945a)
- fix configuration imports (374a41982b51929632d5f52a2aba929a292aa50c)
- add processing/tokenization siglip (9d8f3cc6cc37ba5833a7073ba3363e99d19068eb)
- add convert siglip to hf (3b15dc97d30ffd7289428e4e8950c1c46d00986e)
- use transformers siglip modeling implementation except for flash attention (20f77128b113be3b61b34155eec760b1c38d9950)
- fix config (8254757eb3aab6dfd1bb9f076552260e0a172bf6)
- fix issues with erf and xavier init (b298ee1a7922b874ba8f313ab6ff2c953cf5dba6)
- add safetensors from google model (98130385412ccff0b249b6340d3f74a1615c2657)
- bilinear instead of bicubic (df7ef893928ca01fc0e6a62cf9265054846a526b)
- .gitattributes +1 -0
- config.json +2 -5
- configuration_siglip.py +24 -166
- convert_siglip_to_hf.py +413 -0
- image_processing_siglip.py +45 -49
- model.safetensors +2 -2
- modeling_siglip.py +204 -168
- processing_siglip.py +143 -0
- tokenization_siglip.py +389 -0
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
@@ -8,19 +8,16 @@
|
|
8 |
"AutoModel": "HuggingFaceM4/siglip-so400m-14-384-flash-attn2--modeling_siglip.SiglipModel"
|
9 |
},
|
10 |
"initializer_factor": 1.0,
|
11 |
-
"logit_scale_init_value": 2.6592,
|
12 |
"model_type": "siglip",
|
13 |
-
"projection_dim": 512,
|
14 |
"text_config": {
|
15 |
"hidden_size": 1152,
|
16 |
"intermediate_size": 4304,
|
17 |
"model_type": "siglip_text_model",
|
18 |
"num_attention_heads": 16,
|
19 |
-
"num_hidden_layers": 27
|
20 |
-
"vocab_size": 32000
|
21 |
},
|
22 |
"torch_dtype": "float32",
|
23 |
-
"transformers_version": "4.
|
24 |
"vision_config": {
|
25 |
"hidden_size": 1152,
|
26 |
"image_size": 384,
|
|
|
8 |
"AutoModel": "HuggingFaceM4/siglip-so400m-14-384-flash-attn2--modeling_siglip.SiglipModel"
|
9 |
},
|
10 |
"initializer_factor": 1.0,
|
|
|
11 |
"model_type": "siglip",
|
|
|
12 |
"text_config": {
|
13 |
"hidden_size": 1152,
|
14 |
"intermediate_size": 4304,
|
15 |
"model_type": "siglip_text_model",
|
16 |
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 27
|
|
|
18 |
},
|
19 |
"torch_dtype": "float32",
|
20 |
+
"transformers_version": "4.37.0.dev0",
|
21 |
"vision_config": {
|
22 |
"hidden_size": 1152,
|
23 |
"image_size": 384,
|
@@ -1,5 +1,5 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
@@ -15,16 +15,9 @@
|
|
15 |
""" Siglip model configuration"""
|
16 |
|
17 |
import os
|
18 |
-
from
|
19 |
-
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
20 |
-
|
21 |
-
|
22 |
-
if TYPE_CHECKING:
|
23 |
-
from transformers.processing_utils import ProcessorMixin
|
24 |
-
from transformers.utils import TensorType
|
25 |
|
26 |
from transformers.configuration_utils import PretrainedConfig
|
27 |
-
from transformers.onnx import OnnxConfig
|
28 |
from transformers.utils import logging
|
29 |
|
30 |
|
@@ -46,16 +39,16 @@ class SiglipTextConfig(PretrainedConfig):
|
|
46 |
documentation from [`PretrainedConfig`] for more information.
|
47 |
|
48 |
Args:
|
49 |
-
vocab_size (`int`, *optional*, defaults to
|
50 |
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
|
51 |
the `inputs_ids` passed when calling [`SiglipModel`].
|
52 |
-
hidden_size (`int`, *optional*, defaults to
|
53 |
Dimensionality of the encoder layers and the pooler layer.
|
54 |
-
intermediate_size (`int`, *optional*, defaults to
|
55 |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
56 |
num_hidden_layers (`int`, *optional*, defaults to 12):
|
57 |
Number of hidden layers in the Transformer encoder.
|
58 |
-
num_attention_heads (`int`, *optional*, defaults to
|
59 |
Number of attention heads for each attention layer in the Transformer encoder.
|
60 |
max_position_embeddings (`int`, *optional*, defaults to 64):
|
61 |
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
@@ -63,15 +56,16 @@ class SiglipTextConfig(PretrainedConfig):
|
|
63 |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
64 |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
65 |
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
66 |
-
layer_norm_eps (`float`, *optional*, defaults to 1e-
|
67 |
The epsilon used by the layer normalization layers.
|
68 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
69 |
The dropout ratio for the attention probabilities.
|
70 |
-
|
71 |
-
The
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
75 |
|
76 |
Example:
|
77 |
|
@@ -87,22 +81,20 @@ class SiglipTextConfig(PretrainedConfig):
|
|
87 |
>>> # Accessing the model configuration
|
88 |
>>> configuration = model.config
|
89 |
```"""
|
|
|
90 |
model_type = "siglip_text_model"
|
91 |
|
92 |
def __init__(
|
93 |
self,
|
94 |
-
vocab_size=
|
95 |
-
hidden_size=
|
96 |
-
intermediate_size=
|
97 |
-
projection_dim=512,
|
98 |
num_hidden_layers=12,
|
99 |
-
num_attention_heads=
|
100 |
max_position_embeddings=64,
|
101 |
hidden_act="gelu_pytorch_tanh",
|
102 |
layer_norm_eps=1e-6,
|
103 |
attention_dropout=0.0,
|
104 |
-
initializer_range=0.02,
|
105 |
-
initializer_factor=1.0,
|
106 |
# This differs from `CLIPTokenizer`'s default and from openai/siglip
|
107 |
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
108 |
pad_token_id=1,
|
@@ -116,14 +108,11 @@ class SiglipTextConfig(PretrainedConfig):
|
|
116 |
self.vocab_size = vocab_size
|
117 |
self.hidden_size = hidden_size
|
118 |
self.intermediate_size = intermediate_size
|
119 |
-
self.projection_dim = projection_dim
|
120 |
self.num_hidden_layers = num_hidden_layers
|
121 |
self.num_attention_heads = num_attention_heads
|
122 |
self.max_position_embeddings = max_position_embeddings
|
123 |
self.layer_norm_eps = layer_norm_eps
|
124 |
self.hidden_act = hidden_act
|
125 |
-
self.initializer_range = initializer_range
|
126 |
-
self.initializer_factor = initializer_factor
|
127 |
self.attention_dropout = attention_dropout
|
128 |
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
129 |
|
@@ -165,22 +154,19 @@ class SiglipVisionConfig(PretrainedConfig):
|
|
165 |
Number of hidden layers in the Transformer encoder.
|
166 |
num_attention_heads (`int`, *optional*, defaults to 12):
|
167 |
Number of attention heads for each attention layer in the Transformer encoder.
|
|
|
|
|
168 |
image_size (`int`, *optional*, defaults to 224):
|
169 |
The size (resolution) of each image.
|
170 |
-
patch_size (`int`, *optional*, defaults to
|
171 |
The size (resolution) of each patch.
|
172 |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
173 |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
174 |
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
175 |
-
layer_norm_eps (`float`, *optional*, defaults to 1e-
|
176 |
The epsilon used by the layer normalization layers.
|
177 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
178 |
The dropout ratio for the attention probabilities.
|
179 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
180 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
181 |
-
initializer_factor (`float`, *optional*, defaults to 1):
|
182 |
-
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
183 |
-
testing).
|
184 |
|
185 |
Example:
|
186 |
|
@@ -203,17 +189,14 @@ class SiglipVisionConfig(PretrainedConfig):
|
|
203 |
self,
|
204 |
hidden_size=768,
|
205 |
intermediate_size=3072,
|
206 |
-
projection_dim=512,
|
207 |
num_hidden_layers=12,
|
208 |
num_attention_heads=12,
|
209 |
num_channels=3,
|
210 |
image_size=224,
|
211 |
-
patch_size=
|
212 |
hidden_act="gelu_pytorch_tanh",
|
213 |
layer_norm_eps=1e-6,
|
214 |
attention_dropout=0.0,
|
215 |
-
initializer_range=0.02,
|
216 |
-
initializer_factor=1.0,
|
217 |
_flash_attn_2_enabled=True,
|
218 |
**kwargs,
|
219 |
):
|
@@ -221,14 +204,11 @@ class SiglipVisionConfig(PretrainedConfig):
|
|
221 |
|
222 |
self.hidden_size = hidden_size
|
223 |
self.intermediate_size = intermediate_size
|
224 |
-
self.projection_dim = projection_dim
|
225 |
self.num_hidden_layers = num_hidden_layers
|
226 |
self.num_attention_heads = num_attention_heads
|
227 |
self.num_channels = num_channels
|
228 |
self.patch_size = patch_size
|
229 |
self.image_size = image_size
|
230 |
-
self.initializer_range = initializer_range
|
231 |
-
self.initializer_factor = initializer_factor
|
232 |
self.attention_dropout = attention_dropout
|
233 |
self.layer_norm_eps = layer_norm_eps
|
234 |
self.hidden_act = hidden_act
|
@@ -268,10 +248,6 @@ class SiglipConfig(PretrainedConfig):
|
|
268 |
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
|
269 |
vision_config (`dict`, *optional*):
|
270 |
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
|
271 |
-
projection_dim (`int`, *optional*, defaults to 512):
|
272 |
-
Dimentionality of text and vision projection layers.
|
273 |
-
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
274 |
-
The inital value of the *logit_scale* paramter. Default is used as per the original Siglip implementation.
|
275 |
kwargs (*optional*):
|
276 |
Dictionary of keyword arguments.
|
277 |
|
@@ -301,79 +277,9 @@ class SiglipConfig(PretrainedConfig):
|
|
301 |
|
302 |
model_type = "siglip"
|
303 |
|
304 |
-
def __init__(
|
305 |
-
self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
|
306 |
-
):
|
307 |
-
# If `_config_dict` exist, we use them for the backward compatibility.
|
308 |
-
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
|
309 |
-
# of confusion!).
|
310 |
-
text_config_dict = kwargs.pop("text_config_dict", None)
|
311 |
-
vision_config_dict = kwargs.pop("vision_config_dict", None)
|
312 |
-
|
313 |
super().__init__(**kwargs)
|
314 |
|
315 |
-
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
|
316 |
-
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
|
317 |
-
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
|
318 |
-
if text_config_dict is not None:
|
319 |
-
if text_config is None:
|
320 |
-
text_config = {}
|
321 |
-
|
322 |
-
# This is the complete result when using `text_config_dict`.
|
323 |
-
_text_config_dict = SiglipTextConfig(**text_config_dict).to_dict()
|
324 |
-
|
325 |
-
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
|
326 |
-
for key, value in _text_config_dict.items():
|
327 |
-
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
|
328 |
-
# If specified in `text_config_dict`
|
329 |
-
if key in text_config_dict:
|
330 |
-
message = (
|
331 |
-
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values."
|
332 |
-
f' The value `text_config_dict["{key}"]` will be used instead.'
|
333 |
-
)
|
334 |
-
# If inferred from default argument values (just to be super careful)
|
335 |
-
else:
|
336 |
-
message = (
|
337 |
-
"`text_config_dict` is provided which will be used to initialize `SiglipTextConfig`. The "
|
338 |
-
f'value `text_config["{key}"]` will be overriden.'
|
339 |
-
)
|
340 |
-
logger.warning(message)
|
341 |
-
|
342 |
-
# Update all values in `text_config` with the ones in `_text_config_dict`.
|
343 |
-
text_config.update(_text_config_dict)
|
344 |
-
|
345 |
-
if vision_config_dict is not None:
|
346 |
-
if vision_config is None:
|
347 |
-
vision_config = {}
|
348 |
-
|
349 |
-
# This is the complete result when using `vision_config_dict`.
|
350 |
-
_vision_config_dict = SiglipVisionConfig(**vision_config_dict).to_dict()
|
351 |
-
# convert keys to string instead of integer
|
352 |
-
if "id2label" in _vision_config_dict:
|
353 |
-
_vision_config_dict["id2label"] = {
|
354 |
-
str(key): value for key, value in _vision_config_dict["id2label"].items()
|
355 |
-
}
|
356 |
-
|
357 |
-
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
|
358 |
-
for key, value in _vision_config_dict.items():
|
359 |
-
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
|
360 |
-
# If specified in `vision_config_dict`
|
361 |
-
if key in vision_config_dict:
|
362 |
-
message = (
|
363 |
-
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
|
364 |
-
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
|
365 |
-
)
|
366 |
-
# If inferred from default argument values (just to be super careful)
|
367 |
-
else:
|
368 |
-
message = (
|
369 |
-
"`vision_config_dict` is provided which will be used to initialize `SiglipVisionConfig`. "
|
370 |
-
f'The value `vision_config["{key}"]` will be overriden.'
|
371 |
-
)
|
372 |
-
logger.warning(message)
|
373 |
-
|
374 |
-
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
|
375 |
-
vision_config.update(_vision_config_dict)
|
376 |
-
|
377 |
if text_config is None:
|
378 |
text_config = {}
|
379 |
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
|
@@ -385,8 +291,6 @@ class SiglipConfig(PretrainedConfig):
|
|
385 |
self.text_config = SiglipTextConfig(**text_config)
|
386 |
self.vision_config = SiglipVisionConfig(**vision_config)
|
387 |
|
388 |
-
self.projection_dim = projection_dim
|
389 |
-
self.logit_scale_init_value = logit_scale_init_value
|
390 |
self.initializer_factor = 1.0
|
391 |
|
392 |
@classmethod
|
@@ -400,49 +304,3 @@ class SiglipConfig(PretrainedConfig):
|
|
400 |
"""
|
401 |
|
402 |
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
403 |
-
|
404 |
-
|
405 |
-
class SiglipOnnxConfig(OnnxConfig):
|
406 |
-
@property
|
407 |
-
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
408 |
-
return OrderedDict(
|
409 |
-
[
|
410 |
-
("input_ids", {0: "batch", 1: "sequence"}),
|
411 |
-
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
412 |
-
("attention_mask", {0: "batch", 1: "sequence"}),
|
413 |
-
]
|
414 |
-
)
|
415 |
-
|
416 |
-
@property
|
417 |
-
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
418 |
-
return OrderedDict(
|
419 |
-
[
|
420 |
-
("logits_per_image", {0: "batch"}),
|
421 |
-
("logits_per_text", {0: "batch"}),
|
422 |
-
("text_embeds", {0: "batch"}),
|
423 |
-
("image_embeds", {0: "batch"}),
|
424 |
-
]
|
425 |
-
)
|
426 |
-
|
427 |
-
@property
|
428 |
-
def atol_for_validation(self) -> float:
|
429 |
-
return 1e-4
|
430 |
-
|
431 |
-
def generate_dummy_inputs(
|
432 |
-
self,
|
433 |
-
processor: "ProcessorMixin",
|
434 |
-
batch_size: int = -1,
|
435 |
-
seq_length: int = -1,
|
436 |
-
framework: Optional["TensorType"] = None,
|
437 |
-
) -> Mapping[str, Any]:
|
438 |
-
text_input_dict = super().generate_dummy_inputs(
|
439 |
-
processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
|
440 |
-
)
|
441 |
-
image_input_dict = super().generate_dummy_inputs(
|
442 |
-
processor.image_processor, batch_size=batch_size, framework=framework
|
443 |
-
)
|
444 |
-
return {**text_input_dict, **image_input_dict}
|
445 |
-
|
446 |
-
@property
|
447 |
-
def default_onnx_opset(self) -> int:
|
448 |
-
return 14
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
|
|
15 |
""" Siglip model configuration"""
|
16 |
|
17 |
import os
|
18 |
+
from typing import Union
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
from transformers.configuration_utils import PretrainedConfig
|
|
|
21 |
from transformers.utils import logging
|
22 |
|
23 |
|
|
|
39 |
documentation from [`PretrainedConfig`] for more information.
|
40 |
|
41 |
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
|
44 |
the `inputs_ids` passed when calling [`SiglipModel`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
46 |
Dimensionality of the encoder layers and the pooler layer.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
48 |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
49 |
num_hidden_layers (`int`, *optional*, defaults to 12):
|
50 |
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
52 |
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
max_position_embeddings (`int`, *optional*, defaults to 64):
|
54 |
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
|
|
56 |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
57 |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
58 |
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
59 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
60 |
The epsilon used by the layer normalization layers.
|
61 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
62 |
The dropout ratio for the attention probabilities.
|
63 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
64 |
+
The id of the padding token in the vocabulary.
|
65 |
+
bos_token_id (`int`, *optional*, defaults to 49406):
|
66 |
+
The id of the beginning-of-sequence token in the vocabulary.
|
67 |
+
eos_token_id (`int`, *optional*, defaults to 49407):
|
68 |
+
The id of the end-of-sequence token in the vocabulary.
|
69 |
|
70 |
Example:
|
71 |
|
|
|
81 |
>>> # Accessing the model configuration
|
82 |
>>> configuration = model.config
|
83 |
```"""
|
84 |
+
|
85 |
model_type = "siglip_text_model"
|
86 |
|
87 |
def __init__(
|
88 |
self,
|
89 |
+
vocab_size=32000,
|
90 |
+
hidden_size=768,
|
91 |
+
intermediate_size=3072,
|
|
|
92 |
num_hidden_layers=12,
|
93 |
+
num_attention_heads=12,
|
94 |
max_position_embeddings=64,
|
95 |
hidden_act="gelu_pytorch_tanh",
|
96 |
layer_norm_eps=1e-6,
|
97 |
attention_dropout=0.0,
|
|
|
|
|
98 |
# This differs from `CLIPTokenizer`'s default and from openai/siglip
|
99 |
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
100 |
pad_token_id=1,
|
|
|
108 |
self.vocab_size = vocab_size
|
109 |
self.hidden_size = hidden_size
|
110 |
self.intermediate_size = intermediate_size
|
|
|
111 |
self.num_hidden_layers = num_hidden_layers
|
112 |
self.num_attention_heads = num_attention_heads
|
113 |
self.max_position_embeddings = max_position_embeddings
|
114 |
self.layer_norm_eps = layer_norm_eps
|
115 |
self.hidden_act = hidden_act
|
|
|
|
|
116 |
self.attention_dropout = attention_dropout
|
117 |
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
118 |
|
|
|
154 |
Number of hidden layers in the Transformer encoder.
|
155 |
num_attention_heads (`int`, *optional*, defaults to 12):
|
156 |
Number of attention heads for each attention layer in the Transformer encoder.
|
157 |
+
num_channels (`int`, *optional*, defaults to 3):
|
158 |
+
Number of channels in the input images.
|
159 |
image_size (`int`, *optional*, defaults to 224):
|
160 |
The size (resolution) of each image.
|
161 |
+
patch_size (`int`, *optional*, defaults to 16):
|
162 |
The size (resolution) of each patch.
|
163 |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
164 |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
165 |
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
166 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
167 |
The epsilon used by the layer normalization layers.
|
168 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
169 |
The dropout ratio for the attention probabilities.
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
Example:
|
172 |
|
|
|
189 |
self,
|
190 |
hidden_size=768,
|
191 |
intermediate_size=3072,
|
|
|
192 |
num_hidden_layers=12,
|
193 |
num_attention_heads=12,
|
194 |
num_channels=3,
|
195 |
image_size=224,
|
196 |
+
patch_size=16,
|
197 |
hidden_act="gelu_pytorch_tanh",
|
198 |
layer_norm_eps=1e-6,
|
199 |
attention_dropout=0.0,
|
|
|
|
|
200 |
_flash_attn_2_enabled=True,
|
201 |
**kwargs,
|
202 |
):
|
|
|
204 |
|
205 |
self.hidden_size = hidden_size
|
206 |
self.intermediate_size = intermediate_size
|
|
|
207 |
self.num_hidden_layers = num_hidden_layers
|
208 |
self.num_attention_heads = num_attention_heads
|
209 |
self.num_channels = num_channels
|
210 |
self.patch_size = patch_size
|
211 |
self.image_size = image_size
|
|
|
|
|
212 |
self.attention_dropout = attention_dropout
|
213 |
self.layer_norm_eps = layer_norm_eps
|
214 |
self.hidden_act = hidden_act
|
|
|
248 |
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
|
249 |
vision_config (`dict`, *optional*):
|
250 |
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
|
|
|
|
|
|
|
|
|
251 |
kwargs (*optional*):
|
252 |
Dictionary of keyword arguments.
|
253 |
|
|
|
277 |
|
278 |
model_type = "siglip"
|
279 |
|
280 |
+
def __init__(self, text_config=None, vision_config=None, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
super().__init__(**kwargs)
|
282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
if text_config is None:
|
284 |
text_config = {}
|
285 |
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
|
|
|
291 |
self.text_config = SiglipTextConfig(**text_config)
|
292 |
self.vision_config = SiglipVisionConfig(**vision_config)
|
293 |
|
|
|
|
|
294 |
self.initializer_factor = 1.0
|
295 |
|
296 |
@classmethod
|
|
|
304 |
"""
|
305 |
|
306 |
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert SigLIP checkpoints from the original repository.
|
16 |
+
|
17 |
+
URL: https://github.com/google-research/big_vision/tree/main
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
import argparse
|
22 |
+
import collections
|
23 |
+
from pathlib import Path
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import requests
|
27 |
+
import torch
|
28 |
+
from huggingface_hub import hf_hub_download
|
29 |
+
from numpy import load
|
30 |
+
from PIL import Image
|
31 |
+
|
32 |
+
from transformers import SiglipConfig, SiglipImageProcessor, SiglipModel, SiglipProcessor, SiglipTokenizer
|
33 |
+
from transformers.utils import logging
|
34 |
+
|
35 |
+
|
36 |
+
logging.set_verbosity_info()
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
model_name_to_checkpoint = {
|
41 |
+
# base checkpoints
|
42 |
+
"siglip-base-patch16-224": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_224_63724782.npz",
|
43 |
+
"siglip-base-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_256_60500360.npz",
|
44 |
+
"siglip-base-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_384_68578854.npz",
|
45 |
+
"siglip-base-patch16-512": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_512_68580893.npz",
|
46 |
+
# large checkpoints
|
47 |
+
"siglip-large-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_256_60552751.npz",
|
48 |
+
"siglip-large-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_384_63634585.npz",
|
49 |
+
# multilingual checkpoint
|
50 |
+
"siglip-base-patch16-256-i18n": "/Users/nielsrogge/Documents/SigLIP/webli_i18n_b16_256_66117334.npz",
|
51 |
+
# so400m checkpoints
|
52 |
+
"siglip-so400m-patch14-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_so400m_384_58765454.npz",
|
53 |
+
}
|
54 |
+
|
55 |
+
model_name_to_image_size = {
|
56 |
+
"siglip-base-patch16-224": 224,
|
57 |
+
"siglip-base-patch16-256": 256,
|
58 |
+
"siglip-base-patch16-384": 384,
|
59 |
+
"siglip-base-patch16-512": 512,
|
60 |
+
"siglip-large-patch16-256": 256,
|
61 |
+
"siglip-large-patch16-384": 384,
|
62 |
+
"siglip-base-patch16-256-i18n": 256,
|
63 |
+
"siglip-so400m-patch14-384": 384,
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
def get_siglip_config(model_name):
|
68 |
+
config = SiglipConfig()
|
69 |
+
|
70 |
+
vocab_size = 250000 if "i18n" in model_name else 32000
|
71 |
+
image_size = model_name_to_image_size[model_name]
|
72 |
+
patch_size = 16 if "patch16" in model_name else 14
|
73 |
+
|
74 |
+
# size of the architecture
|
75 |
+
config.vision_config.image_size = image_size
|
76 |
+
config.vision_config.patch_size = patch_size
|
77 |
+
config.text_config.vocab_size = vocab_size
|
78 |
+
|
79 |
+
if "base" in model_name:
|
80 |
+
pass
|
81 |
+
elif "large" in model_name:
|
82 |
+
config.text_config.hidden_size = 1024
|
83 |
+
config.text_config.intermediate_size = 4096
|
84 |
+
config.text_config.num_hidden_layers = 24
|
85 |
+
config.text_config.num_attention_heads = 16
|
86 |
+
config.vision_config.hidden_size = 1024
|
87 |
+
config.vision_config.intermediate_size = 4096
|
88 |
+
config.vision_config.num_hidden_layers = 24
|
89 |
+
config.vision_config.num_attention_heads = 16
|
90 |
+
elif "so400m" in model_name:
|
91 |
+
config.text_config.hidden_size = 1152
|
92 |
+
config.text_config.intermediate_size = 4304
|
93 |
+
config.text_config.num_hidden_layers = 27
|
94 |
+
config.text_config.num_attention_heads = 16
|
95 |
+
config.vision_config.hidden_size = 1152
|
96 |
+
config.vision_config.intermediate_size = 4304
|
97 |
+
config.vision_config.num_hidden_layers = 27
|
98 |
+
config.vision_config.num_attention_heads = 16
|
99 |
+
else:
|
100 |
+
raise ValueError("Model not supported")
|
101 |
+
|
102 |
+
return config
|
103 |
+
|
104 |
+
|
105 |
+
def create_rename_keys(config):
|
106 |
+
rename_keys = []
|
107 |
+
# fmt: off
|
108 |
+
|
109 |
+
# vision encoder
|
110 |
+
|
111 |
+
rename_keys.append(("params/img/embedding/kernel", "vision_model.embeddings.patch_embedding.weight"))
|
112 |
+
rename_keys.append(("params/img/embedding/bias", "vision_model.embeddings.patch_embedding.bias"))
|
113 |
+
rename_keys.append(("params/img/pos_embedding", "vision_model.embeddings.position_embedding.weight"))
|
114 |
+
|
115 |
+
for i in range(config.vision_config.num_hidden_layers):
|
116 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/scale", f"vision_model.encoder.layers.{i}.layer_norm1.weight"))
|
117 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias"))
|
118 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/scale", f"vision_model.encoder.layers.{i}.layer_norm2.weight"))
|
119 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias"))
|
120 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"vision_model.encoder.layers.{i}.mlp.fc1.weight"))
|
121 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias"))
|
122 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"vision_model.encoder.layers.{i}.mlp.fc2.weight"))
|
123 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias"))
|
124 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"vision_model.encoder.layers.{i}.self_attn.k_proj.weight"))
|
125 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"vision_model.encoder.layers.{i}.self_attn.k_proj.bias"))
|
126 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"vision_model.encoder.layers.{i}.self_attn.v_proj.weight"))
|
127 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"vision_model.encoder.layers.{i}.self_attn.v_proj.bias"))
|
128 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"vision_model.encoder.layers.{i}.self_attn.q_proj.weight"))
|
129 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"vision_model.encoder.layers.{i}.self_attn.q_proj.bias"))
|
130 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"vision_model.encoder.layers.{i}.self_attn.out_proj.weight"))
|
131 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"vision_model.encoder.layers.{i}.self_attn.out_proj.bias"))
|
132 |
+
|
133 |
+
rename_keys.append(("params/img/Transformer/encoder_norm/scale", "vision_model.post_layernorm.weight"))
|
134 |
+
rename_keys.append(("params/img/Transformer/encoder_norm/bias", "vision_model.post_layernorm.bias"))
|
135 |
+
|
136 |
+
rename_keys.append(("params/img/MAPHead_0/probe", "vision_model.head.probe"))
|
137 |
+
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/scale", "vision_model.head.layernorm.weight"))
|
138 |
+
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/bias", "vision_model.head.layernorm.bias"))
|
139 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/kernel", "vision_model.head.mlp.fc1.weight"))
|
140 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/bias", "vision_model.head.mlp.fc1.bias"))
|
141 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/kernel", "vision_model.head.mlp.fc2.weight"))
|
142 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/bias", "vision_model.head.mlp.fc2.bias"))
|
143 |
+
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/kernel", "vision_model.head.attention.out_proj.weight"))
|
144 |
+
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/bias", "vision_model.head.attention.out_proj.bias"))
|
145 |
+
|
146 |
+
# text encoder
|
147 |
+
|
148 |
+
rename_keys.append(("params/txt/Embed_0/embedding", "text_model.embeddings.token_embedding.weight"))
|
149 |
+
rename_keys.append(("params/txt/pos_embedding", "text_model.embeddings.position_embedding.weight"))
|
150 |
+
|
151 |
+
for i in range(config.text_config.num_hidden_layers):
|
152 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/scale", f"text_model.encoder.layers.{i}.layer_norm1.weight"))
|
153 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/bias", f"text_model.encoder.layers.{i}.layer_norm1.bias"))
|
154 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/scale", f"text_model.encoder.layers.{i}.layer_norm2.weight"))
|
155 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/bias", f"text_model.encoder.layers.{i}.layer_norm2.bias"))
|
156 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"text_model.encoder.layers.{i}.mlp.fc1.weight"))
|
157 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"text_model.encoder.layers.{i}.mlp.fc1.bias"))
|
158 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"text_model.encoder.layers.{i}.mlp.fc2.weight"))
|
159 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"text_model.encoder.layers.{i}.mlp.fc2.bias"))
|
160 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"text_model.encoder.layers.{i}.self_attn.k_proj.weight"))
|
161 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"text_model.encoder.layers.{i}.self_attn.k_proj.bias"))
|
162 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"text_model.encoder.layers.{i}.self_attn.v_proj.weight"))
|
163 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"text_model.encoder.layers.{i}.self_attn.v_proj.bias"))
|
164 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"text_model.encoder.layers.{i}.self_attn.q_proj.weight"))
|
165 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"text_model.encoder.layers.{i}.self_attn.q_proj.bias"))
|
166 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"text_model.encoder.layers.{i}.self_attn.out_proj.weight"))
|
167 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"text_model.encoder.layers.{i}.self_attn.out_proj.bias"))
|
168 |
+
|
169 |
+
rename_keys.append(("params/txt/Encoder_0/encoder_norm/scale", "text_model.final_layer_norm.weight"))
|
170 |
+
rename_keys.append(("params/txt/Encoder_0/encoder_norm/bias", "text_model.final_layer_norm.bias"))
|
171 |
+
rename_keys.append(("params/txt/head/kernel", "text_model.head.weight"))
|
172 |
+
rename_keys.append(("params/txt/head/bias", "text_model.head.bias"))
|
173 |
+
|
174 |
+
# learned temperature and bias
|
175 |
+
rename_keys.append(("params/t", "logit_scale"))
|
176 |
+
rename_keys.append(("params/b", "logit_bias"))
|
177 |
+
|
178 |
+
# fmt: on
|
179 |
+
return rename_keys
|
180 |
+
|
181 |
+
|
182 |
+
def rename_key(dct, old, new, config):
|
183 |
+
val = dct.pop(old)
|
184 |
+
|
185 |
+
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "vision" in new:
|
186 |
+
val = val.reshape(-1, config.vision_config.hidden_size)
|
187 |
+
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "text" in new:
|
188 |
+
val = val.reshape(-1, config.text_config.hidden_size)
|
189 |
+
|
190 |
+
if "patch_embedding.weight" in new:
|
191 |
+
val = val.transpose(3, 2, 0, 1)
|
192 |
+
elif new.endswith("weight") and "position_embedding" not in new and "token_embedding" not in new:
|
193 |
+
val = val.T
|
194 |
+
|
195 |
+
if "position_embedding" in new and "vision" in new:
|
196 |
+
val = val.reshape(-1, config.vision_config.hidden_size)
|
197 |
+
if "position_embedding" in new and "text" in new:
|
198 |
+
val = val.reshape(-1, config.text_config.hidden_size)
|
199 |
+
|
200 |
+
if new.endswith("bias"):
|
201 |
+
val = val.reshape(-1)
|
202 |
+
|
203 |
+
dct[new] = torch.from_numpy(val)
|
204 |
+
|
205 |
+
|
206 |
+
def read_in_q_k_v_head(state_dict, config):
|
207 |
+
# read in individual input projection layers
|
208 |
+
key_proj_weight = (
|
209 |
+
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/kernel")
|
210 |
+
.reshape(-1, config.vision_config.hidden_size)
|
211 |
+
.T
|
212 |
+
)
|
213 |
+
key_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/bias").reshape(-1)
|
214 |
+
value_proj_weight = (
|
215 |
+
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/kernel")
|
216 |
+
.reshape(-1, config.vision_config.hidden_size)
|
217 |
+
.T
|
218 |
+
)
|
219 |
+
value_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/bias").reshape(-1)
|
220 |
+
query_proj_weight = (
|
221 |
+
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/kernel")
|
222 |
+
.reshape(-1, config.vision_config.hidden_size)
|
223 |
+
.T
|
224 |
+
)
|
225 |
+
query_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/bias").reshape(-1)
|
226 |
+
|
227 |
+
# next, add them to the state dict as a single matrix + vector
|
228 |
+
state_dict["vision_model.head.attention.in_proj_weight"] = torch.from_numpy(
|
229 |
+
np.concatenate([query_proj_weight, key_proj_weight, value_proj_weight], axis=0)
|
230 |
+
)
|
231 |
+
state_dict["vision_model.head.attention.in_proj_bias"] = torch.from_numpy(
|
232 |
+
np.concatenate([query_proj_bias, key_proj_bias, value_proj_bias], axis=0)
|
233 |
+
)
|
234 |
+
|
235 |
+
|
236 |
+
# We will verify our results on an image of cute cats
|
237 |
+
def prepare_img():
|
238 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
239 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
240 |
+
return image
|
241 |
+
|
242 |
+
|
243 |
+
def flatten_nested_dict(params, parent_key="", sep="/"):
|
244 |
+
items = []
|
245 |
+
|
246 |
+
for k, v in params.items():
|
247 |
+
new_key = parent_key + sep + k if parent_key else k
|
248 |
+
|
249 |
+
if isinstance(v, collections.abc.MutableMapping):
|
250 |
+
items.extend(flatten_nested_dict(v, new_key, sep=sep).items())
|
251 |
+
else:
|
252 |
+
items.append((new_key, v))
|
253 |
+
return dict(items)
|
254 |
+
|
255 |
+
|
256 |
+
@torch.no_grad()
|
257 |
+
def convert_siglip_checkpoint(model_name, pytorch_dump_folder_path, verify_logits=True, push_to_hub=False):
|
258 |
+
"""
|
259 |
+
Copy/paste/tweak model's weights to our SigLIP structure.
|
260 |
+
"""
|
261 |
+
|
262 |
+
# define default SigLIP configuration
|
263 |
+
config = get_siglip_config(model_name)
|
264 |
+
|
265 |
+
# get checkpoint
|
266 |
+
checkpoint = model_name_to_checkpoint[model_name]
|
267 |
+
|
268 |
+
# get vocab file
|
269 |
+
if "i18n" in model_name:
|
270 |
+
vocab_file = "/Users/nielsrogge/Documents/SigLIP/multilingual_vocab/sentencepiece.model"
|
271 |
+
else:
|
272 |
+
vocab_file = "/Users/nielsrogge/Documents/SigLIP/english_vocab/sentencepiece.model"
|
273 |
+
|
274 |
+
# load original state dict
|
275 |
+
data = load(checkpoint)
|
276 |
+
state_dict = flatten_nested_dict(data)
|
277 |
+
|
278 |
+
# remove and rename some keys
|
279 |
+
rename_keys = create_rename_keys(config)
|
280 |
+
for src, dest in rename_keys:
|
281 |
+
rename_key(state_dict, src, dest, config)
|
282 |
+
|
283 |
+
# qkv matrices of attention pooling head need special treatment
|
284 |
+
read_in_q_k_v_head(state_dict, config)
|
285 |
+
|
286 |
+
# load HuggingFace model
|
287 |
+
model = SiglipModel(config).eval()
|
288 |
+
model.load_state_dict(state_dict)
|
289 |
+
|
290 |
+
# create processor
|
291 |
+
# important: make tokenizer not return attention_mask since original one doesn't require it
|
292 |
+
image_size = config.vision_config.image_size
|
293 |
+
size = {"height": image_size, "width": image_size}
|
294 |
+
image_processor = SiglipImageProcessor(size=size)
|
295 |
+
tokenizer = SiglipTokenizer(vocab_file=vocab_file, model_input_names=["input_ids"])
|
296 |
+
processor = SiglipProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
297 |
+
|
298 |
+
# verify on dummy images and texts
|
299 |
+
url_1 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-ipod.jpg"
|
300 |
+
image_1 = Image.open(requests.get(url_1, stream=True).raw).convert("RGB")
|
301 |
+
url_2 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-blank.jpg"
|
302 |
+
image_2 = Image.open(requests.get(url_2, stream=True).raw).convert("RGB")
|
303 |
+
texts = ["an apple", "a picture of an apple"]
|
304 |
+
|
305 |
+
inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", padding="max_length")
|
306 |
+
|
307 |
+
# verify input_ids against original ones
|
308 |
+
if image_size == 224:
|
309 |
+
filename = "siglip_pixel_values.pt"
|
310 |
+
elif image_size == 256:
|
311 |
+
filename = "siglip_pixel_values_256.pt"
|
312 |
+
elif image_size == 384:
|
313 |
+
filename = "siglip_pixel_values_384.pt"
|
314 |
+
elif image_size == 512:
|
315 |
+
filename = "siglip_pixel_values_512.pt"
|
316 |
+
else:
|
317 |
+
raise ValueError("Image size not supported")
|
318 |
+
|
319 |
+
filepath = hf_hub_download(repo_id="nielsr/test-image", filename=filename, repo_type="dataset")
|
320 |
+
original_pixel_values = torch.load(filepath)
|
321 |
+
filepath = hf_hub_download(repo_id="nielsr/test-image", filename="siglip_input_ids.pt", repo_type="dataset")
|
322 |
+
original_input_ids = torch.load(filepath)
|
323 |
+
|
324 |
+
if "i18n" not in model_name:
|
325 |
+
assert inputs.input_ids.tolist() == original_input_ids.tolist()
|
326 |
+
|
327 |
+
print("Mean of original pixel values:", original_pixel_values.mean())
|
328 |
+
print("Mean of new pixel values:", inputs.pixel_values.mean())
|
329 |
+
|
330 |
+
# note: we're testing with original pixel values here since we don't have exact pixel values
|
331 |
+
with torch.no_grad():
|
332 |
+
outputs = model(input_ids=inputs.input_ids, pixel_values=original_pixel_values)
|
333 |
+
|
334 |
+
# with torch.no_grad():
|
335 |
+
# outputs = model(input_ids=inputs.input_ids, pixel_values=inputs.pixel_values)
|
336 |
+
|
337 |
+
print(outputs.logits_per_image[:3, :3])
|
338 |
+
|
339 |
+
probs = torch.sigmoid(outputs.logits_per_image) # these are the probabilities
|
340 |
+
print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
|
341 |
+
print(f"{probs[0][1]:.1%} that image 0 is '{texts[1]}'")
|
342 |
+
|
343 |
+
if verify_logits:
|
344 |
+
if model_name == "siglip-base-patch16-224":
|
345 |
+
expected_slice = torch.tensor(
|
346 |
+
[[-2.9621, -2.1672], [-0.2713, 0.2910]],
|
347 |
+
)
|
348 |
+
elif model_name == "siglip-base-patch16-256":
|
349 |
+
expected_slice = torch.tensor(
|
350 |
+
[[-3.1146, -1.9894], [-0.7312, 0.6387]],
|
351 |
+
)
|
352 |
+
elif model_name == "siglip-base-patch16-384":
|
353 |
+
expected_slice = torch.tensor(
|
354 |
+
[[-2.8098, -2.1891], [-0.4242, 0.4102]],
|
355 |
+
)
|
356 |
+
elif model_name == "siglip-base-patch16-512":
|
357 |
+
expected_slice = torch.tensor(
|
358 |
+
[[-2.7899, -2.2668], [-0.4295, -0.0735]],
|
359 |
+
)
|
360 |
+
elif model_name == "siglip-large-patch16-256":
|
361 |
+
expected_slice = torch.tensor(
|
362 |
+
[[-1.5827, -0.5801], [-0.9153, 0.1363]],
|
363 |
+
)
|
364 |
+
elif model_name == "siglip-large-patch16-384":
|
365 |
+
expected_slice = torch.tensor(
|
366 |
+
[[-2.1523, -0.2899], [-0.2959, 0.7884]],
|
367 |
+
)
|
368 |
+
elif model_name == "siglip-so400m-patch14-384":
|
369 |
+
expected_slice = torch.tensor([[-1.2441, -0.6649], [-0.7060, 0.7374]])
|
370 |
+
elif model_name == "siglip-base-patch16-256-i18n":
|
371 |
+
expected_slice = torch.tensor(
|
372 |
+
[[-0.9064, 0.1073], [-0.0299, 0.5304]],
|
373 |
+
)
|
374 |
+
|
375 |
+
assert torch.allclose(outputs.logits_per_image[:3, :3], expected_slice, atol=1e-4)
|
376 |
+
print("Looks ok!")
|
377 |
+
|
378 |
+
if pytorch_dump_folder_path is not None:
|
379 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
380 |
+
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
|
381 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
382 |
+
print(f"Saving processor to {pytorch_dump_folder_path}")
|
383 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
384 |
+
|
385 |
+
if push_to_hub:
|
386 |
+
model.push_to_hub(f"nielsr/{model_name}")
|
387 |
+
processor.push_to_hub(f"nielsr/{model_name}")
|
388 |
+
|
389 |
+
|
390 |
+
if __name__ == "__main__":
|
391 |
+
parser = argparse.ArgumentParser()
|
392 |
+
# Required parameters
|
393 |
+
parser.add_argument(
|
394 |
+
"--model_name",
|
395 |
+
default="siglip-base-patch16-224",
|
396 |
+
type=str,
|
397 |
+
choices=model_name_to_checkpoint.keys(),
|
398 |
+
help="Name of the model you'd like to convert.",
|
399 |
+
)
|
400 |
+
parser.add_argument(
|
401 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
402 |
+
)
|
403 |
+
parser.add_argument(
|
404 |
+
"--verify_logits",
|
405 |
+
action="store_false",
|
406 |
+
help="Whether to verify logits against the original implementation.",
|
407 |
+
)
|
408 |
+
parser.add_argument(
|
409 |
+
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
|
410 |
+
)
|
411 |
+
|
412 |
+
args = parser.parse_args()
|
413 |
+
convert_siglip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.verify_logits, args.push_to_hub)
|
@@ -1,5 +1,5 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
@@ -14,17 +14,16 @@
|
|
14 |
# limitations under the License.
|
15 |
"""Image processor class for SigLIP."""
|
16 |
|
17 |
-
from typing import Dict, Optional, Union
|
18 |
-
|
19 |
-
import numpy as np
|
20 |
|
21 |
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
from transformers.image_transforms import (
|
23 |
-
rescale,
|
24 |
resize,
|
25 |
to_channel_dimension_format,
|
26 |
)
|
27 |
from transformers.image_utils import (
|
|
|
|
|
28 |
ChannelDimension,
|
29 |
ImageInput,
|
30 |
PILImageResampling,
|
@@ -54,7 +53,7 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
54 |
`do_resize` in the `preprocess` method.
|
55 |
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
|
56 |
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
|
57 |
-
resample (`PILImageResampling`, *optional*, defaults to `
|
58 |
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
59 |
do_rescale (`bool`, *optional*, defaults to `True`):
|
60 |
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
@@ -62,6 +61,16 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
62 |
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
63 |
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
64 |
method.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
"""
|
66 |
|
67 |
model_input_names = ["pixel_values"]
|
@@ -73,57 +82,24 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
73 |
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
74 |
do_rescale: bool = True,
|
75 |
rescale_factor: Union[int, float] = 1 / 255,
|
|
|
|
|
|
|
76 |
**kwargs,
|
77 |
) -> None:
|
78 |
super().__init__(**kwargs)
|
79 |
size = size if size is not None else {"height": 224, "width": 224}
|
80 |
-
|
|
|
81 |
|
82 |
self.do_resize = do_resize
|
83 |
self.size = size
|
84 |
self.resample = resample
|
85 |
self.do_rescale = do_rescale
|
86 |
self.rescale_factor = rescale_factor
|
87 |
-
|
88 |
-
|
89 |
-
self
|
90 |
-
image: np.ndarray,
|
91 |
-
rescale_factor: float,
|
92 |
-
data_format: Optional[Union[str, ChannelDimension]] = None,
|
93 |
-
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
94 |
-
**kwargs,
|
95 |
-
) -> np.ndarray:
|
96 |
-
"""
|
97 |
-
Rescale an image by a scale factor. image = image * scale, after which image = image * 2 - 1.
|
98 |
-
|
99 |
-
Args:
|
100 |
-
image (`np.ndarray`):
|
101 |
-
Image to rescale.
|
102 |
-
scale (`float`):
|
103 |
-
The scaling factor to rescale pixel values by.
|
104 |
-
data_format (`str` or `ChannelDimension`, *optional*):
|
105 |
-
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
106 |
-
image is used. Can be one of:
|
107 |
-
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
108 |
-
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
109 |
-
input_data_format (`ChannelDimension` or `str`, *optional*):
|
110 |
-
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
111 |
-
from the input image. Can be one of:
|
112 |
-
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
113 |
-
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
114 |
-
|
115 |
-
Returns:
|
116 |
-
`np.ndarray`: The rescaled image.
|
117 |
-
"""
|
118 |
-
# first, rescale to 0->1
|
119 |
-
rescaled_image = rescale(
|
120 |
-
image, scale=rescale_factor, data_format=data_format, input_data_format=input_data_format, **kwargs
|
121 |
-
)
|
122 |
-
|
123 |
-
# next, rescale to -1->1
|
124 |
-
rescaled_image = 2 * rescaled_image - 1
|
125 |
-
|
126 |
-
return rescaled_image
|
127 |
|
128 |
def preprocess(
|
129 |
self,
|
@@ -133,6 +109,9 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
133 |
resample: PILImageResampling = None,
|
134 |
do_rescale: bool = None,
|
135 |
rescale_factor: float = None,
|
|
|
|
|
|
|
136 |
return_tensors: Optional[Union[str, TensorType]] = None,
|
137 |
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
138 |
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
@@ -156,6 +135,13 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
156 |
Whether to rescale the image.
|
157 |
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
158 |
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
return_tensors (`str` or `TensorType`, *optional*):
|
160 |
The type of tensors to return. Can be one of:
|
161 |
- Unset: Return a list of `np.ndarray`.
|
@@ -181,6 +167,9 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
181 |
resample = resample if resample is not None else self.resample
|
182 |
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
183 |
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
|
|
|
|
|
|
184 |
|
185 |
images = make_list_of_images(images)
|
186 |
|
@@ -210,14 +199,21 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
210 |
input_data_format = infer_channel_dimension_format(images[0])
|
211 |
|
212 |
if do_resize:
|
|
|
213 |
images = [
|
214 |
-
resize(image=image, size=(
|
215 |
for image in images
|
216 |
]
|
217 |
|
218 |
if do_rescale:
|
219 |
images = [
|
220 |
-
self.rescale(image=image,
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
for image in images
|
222 |
]
|
223 |
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
|
|
14 |
# limitations under the License.
|
15 |
"""Image processor class for SigLIP."""
|
16 |
|
17 |
+
from typing import Dict, List, Optional, Union
|
|
|
|
|
18 |
|
19 |
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
20 |
from transformers.image_transforms import (
|
|
|
21 |
resize,
|
22 |
to_channel_dimension_format,
|
23 |
)
|
24 |
from transformers.image_utils import (
|
25 |
+
IMAGENET_STANDARD_MEAN,
|
26 |
+
IMAGENET_STANDARD_STD,
|
27 |
ChannelDimension,
|
28 |
ImageInput,
|
29 |
PILImageResampling,
|
|
|
53 |
`do_resize` in the `preprocess` method.
|
54 |
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
|
55 |
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
|
56 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
|
57 |
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
58 |
do_rescale (`bool`, *optional*, defaults to `True`):
|
59 |
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
|
|
61 |
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
62 |
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
63 |
method.
|
64 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether to normalize the image by the specified mean and standard deviation. Can be overridden by
|
66 |
+
`do_normalize` in the `preprocess` method.
|
67 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
68 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
69 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
70 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
71 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
72 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
73 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
74 |
"""
|
75 |
|
76 |
model_input_names = ["pixel_values"]
|
|
|
82 |
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
83 |
do_rescale: bool = True,
|
84 |
rescale_factor: Union[int, float] = 1 / 255,
|
85 |
+
do_normalize: bool = True,
|
86 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
87 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
88 |
**kwargs,
|
89 |
) -> None:
|
90 |
super().__init__(**kwargs)
|
91 |
size = size if size is not None else {"height": 224, "width": 224}
|
92 |
+
image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
93 |
+
image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
94 |
|
95 |
self.do_resize = do_resize
|
96 |
self.size = size
|
97 |
self.resample = resample
|
98 |
self.do_rescale = do_rescale
|
99 |
self.rescale_factor = rescale_factor
|
100 |
+
self.do_normalize = do_normalize
|
101 |
+
self.image_mean = image_mean
|
102 |
+
self.image_std = image_std
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
def preprocess(
|
105 |
self,
|
|
|
109 |
resample: PILImageResampling = None,
|
110 |
do_rescale: bool = None,
|
111 |
rescale_factor: float = None,
|
112 |
+
do_normalize: bool = None,
|
113 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
114 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
115 |
return_tensors: Optional[Union[str, TensorType]] = None,
|
116 |
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
117 |
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
|
135 |
Whether to rescale the image.
|
136 |
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
137 |
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
138 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
139 |
+
Whether to normalize the image.
|
140 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
141 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
142 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
143 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
144 |
+
`True`.
|
145 |
return_tensors (`str` or `TensorType`, *optional*):
|
146 |
The type of tensors to return. Can be one of:
|
147 |
- Unset: Return a list of `np.ndarray`.
|
|
|
167 |
resample = resample if resample is not None else self.resample
|
168 |
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
169 |
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
170 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
171 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
172 |
+
image_std = image_std if image_std is not None else self.image_std
|
173 |
|
174 |
images = make_list_of_images(images)
|
175 |
|
|
|
199 |
input_data_format = infer_channel_dimension_format(images[0])
|
200 |
|
201 |
if do_resize:
|
202 |
+
height, width = size["height"], size["width"]
|
203 |
images = [
|
204 |
+
resize(image=image, size=(height, width), resample=resample, input_data_format=input_data_format)
|
205 |
for image in images
|
206 |
]
|
207 |
|
208 |
if do_rescale:
|
209 |
images = [
|
210 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
211 |
+
for image in images
|
212 |
+
]
|
213 |
+
|
214 |
+
if do_normalize:
|
215 |
+
images = [
|
216 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
217 |
for image in images
|
218 |
]
|
219 |
|
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea2abad2b7f8a9c1aa5e49a244d5d57ffa71c56f720c94bc5d240ef4d6e1d94a
|
3 |
+
size 3511950624
|
@@ -1,5 +1,5 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
@@ -15,14 +15,20 @@
|
|
15 |
""" PyTorch Siglip model."""
|
16 |
|
17 |
|
|
|
|
|
18 |
from dataclasses import dataclass
|
19 |
from typing import Any, Optional, Tuple, Union
|
20 |
|
|
|
21 |
import torch
|
22 |
import torch.nn.functional as F
|
23 |
import torch.utils.checkpoint
|
24 |
from torch import nn
|
|
|
|
|
25 |
from transformers.activations import ACT2FN
|
|
|
26 |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
27 |
from transformers.modeling_utils import PreTrainedModel
|
28 |
from transformers.utils import (
|
@@ -33,7 +39,6 @@ from transformers.utils import (
|
|
33 |
logging,
|
34 |
replace_return_docstrings,
|
35 |
)
|
36 |
-
|
37 |
from .configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig
|
38 |
|
39 |
|
@@ -64,32 +69,104 @@ def _get_unpad_data(attention_mask):
|
|
64 |
)
|
65 |
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
"""
|
72 |
-
|
73 |
-
|
|
|
|
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
85 |
-
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
86 |
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
caption_loss = contrastive_loss(similarity)
|
91 |
-
image_loss = contrastive_loss(similarity.t())
|
92 |
-
return (caption_loss + image_loss) / 2.0
|
93 |
|
94 |
|
95 |
@dataclass
|
@@ -168,8 +245,7 @@ class SiglipOutput(ModelOutput):
|
|
168 |
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
169 |
The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
|
170 |
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
171 |
-
The image embeddings obtained by applying the projection layer to the pooled output of
|
172 |
-
[`SiglipVisionModel`].
|
173 |
text_model_output(`BaseModelOutputWithPooling`):
|
174 |
The output of the [`SiglipTextModel`].
|
175 |
vision_model_output(`BaseModelOutputWithPooling`):
|
@@ -254,10 +330,10 @@ class SiglipTextEmbeddings(nn.Module):
|
|
254 |
return embeddings
|
255 |
|
256 |
|
257 |
-
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Siglip
|
258 |
class SiglipAttention(nn.Module):
|
259 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
260 |
|
|
|
261 |
def __init__(self, config):
|
262 |
super().__init__()
|
263 |
self.config = config
|
@@ -277,86 +353,57 @@ class SiglipAttention(nn.Module):
|
|
277 |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
278 |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
279 |
|
280 |
-
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
281 |
-
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
282 |
-
|
283 |
def forward(
|
284 |
self,
|
285 |
hidden_states: torch.Tensor,
|
286 |
attention_mask: Optional[torch.Tensor] = None,
|
287 |
-
causal_attention_mask: Optional[torch.Tensor] = None,
|
288 |
output_attentions: Optional[bool] = False,
|
289 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
290 |
"""Input shape: Batch x Time x Channel"""
|
291 |
|
292 |
-
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
value_states = value_states.view(*proj_shape)
|
303 |
|
304 |
-
|
305 |
-
attn_weights = torch.
|
306 |
|
307 |
-
if attn_weights.size() != (
|
308 |
raise ValueError(
|
309 |
-
f"Attention weights should be of size {(
|
310 |
f" {attn_weights.size()}"
|
311 |
)
|
312 |
|
313 |
-
# apply the causal_attention_mask first
|
314 |
-
if causal_attention_mask is not None:
|
315 |
-
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
316 |
-
raise ValueError(
|
317 |
-
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
318 |
-
f" {causal_attention_mask.size()}"
|
319 |
-
)
|
320 |
-
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
321 |
-
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
322 |
-
|
323 |
if attention_mask is not None:
|
324 |
-
if attention_mask.size() != (
|
325 |
raise ValueError(
|
326 |
-
f"Attention mask should be of size {(
|
327 |
)
|
328 |
-
attn_weights = attn_weights
|
329 |
-
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
330 |
|
331 |
-
|
|
|
|
|
|
|
332 |
|
333 |
-
if
|
334 |
-
# this operation is a bit akward, but it's required to
|
335 |
-
# make sure that attn_weights keeps its gradient.
|
336 |
-
# In order to do so, attn_weights have to reshaped
|
337 |
-
# twice and have to be reused in the following
|
338 |
-
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
339 |
-
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
340 |
-
else:
|
341 |
-
attn_weights_reshaped = None
|
342 |
-
|
343 |
-
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
344 |
-
|
345 |
-
attn_output = torch.bmm(attn_probs, value_states)
|
346 |
-
|
347 |
-
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
348 |
raise ValueError(
|
349 |
-
f"`attn_output` should be of size {(
|
350 |
f" {attn_output.size()}"
|
351 |
)
|
352 |
|
353 |
-
attn_output = attn_output.
|
354 |
-
attn_output = attn_output.
|
355 |
-
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
356 |
|
357 |
attn_output = self.out_proj(attn_output)
|
358 |
|
359 |
-
return attn_output,
|
360 |
|
361 |
|
362 |
class SiglipFlashAttention2(SiglipAttention):
|
@@ -581,16 +628,15 @@ class SiglipEncoderLayer(nn.Module):
|
|
581 |
self,
|
582 |
hidden_states: torch.Tensor,
|
583 |
attention_mask: torch.Tensor,
|
584 |
-
causal_attention_mask: torch.Tensor,
|
585 |
output_attentions: Optional[bool] = False,
|
586 |
) -> Tuple[torch.FloatTensor]:
|
587 |
"""
|
588 |
Args:
|
589 |
-
hidden_states (`torch.FloatTensor`):
|
590 |
-
|
591 |
-
|
592 |
-
`(
|
593 |
-
output_attentions (`bool`, *optional
|
594 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
595 |
returned tensors for more detail.
|
596 |
"""
|
@@ -600,7 +646,6 @@ class SiglipEncoderLayer(nn.Module):
|
|
600 |
hidden_states, attn_weights = self.self_attn(
|
601 |
hidden_states=hidden_states,
|
602 |
attention_mask=attention_mask,
|
603 |
-
causal_attention_mask=causal_attention_mask,
|
604 |
output_attentions=output_attentions,
|
605 |
)
|
606 |
hidden_states = residual + hidden_states
|
@@ -630,39 +675,45 @@ class SiglipPreTrainedModel(PreTrainedModel):
|
|
630 |
|
631 |
def _init_weights(self, module):
|
632 |
"""Initialize the weights"""
|
633 |
-
|
634 |
-
if isinstance(module,
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
nn.init.normal_(module.position_embedding.weight, std=
|
|
|
|
|
641 |
elif isinstance(module, SiglipAttention):
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
nn.init.normal_(module.
|
646 |
-
nn.init.
|
647 |
-
nn.init.
|
648 |
-
nn.init.
|
|
|
649 |
elif isinstance(module, SiglipMLP):
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
)
|
654 |
-
|
655 |
-
nn.init.normal_(module.
|
656 |
-
nn.init.normal_(module.
|
657 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
658 |
module.bias.data.zero_()
|
659 |
module.weight.data.fill_(1.0)
|
660 |
-
if isinstance(module, nn.Linear) and module.bias is not None:
|
661 |
-
module.bias.data.zero_()
|
662 |
-
|
663 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
664 |
-
if isinstance(module, SiglipEncoder):
|
665 |
-
module.gradient_checkpointing = value
|
666 |
|
667 |
|
668 |
SIGLIP_START_DOCSTRING = r"""
|
@@ -781,11 +832,11 @@ class SiglipEncoder(nn.Module):
|
|
781 |
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
782 |
self.gradient_checkpointing = False
|
783 |
|
|
|
784 |
def forward(
|
785 |
self,
|
786 |
inputs_embeds,
|
787 |
attention_mask: Optional[torch.Tensor] = None,
|
788 |
-
causal_attention_mask: Optional[torch.Tensor] = None,
|
789 |
output_attentions: Optional[bool] = None,
|
790 |
output_hidden_states: Optional[bool] = None,
|
791 |
return_dict: Optional[bool] = None,
|
@@ -802,13 +853,6 @@ class SiglipEncoder(nn.Module):
|
|
802 |
- 1 for tokens that are **not masked**,
|
803 |
- 0 for tokens that are **masked**.
|
804 |
|
805 |
-
[What are attention masks?](../glossary#attention-mask)
|
806 |
-
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
807 |
-
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
808 |
-
|
809 |
-
- 1 for tokens that are **not masked**,
|
810 |
-
- 0 for tokens that are **masked**.
|
811 |
-
|
812 |
[What are attention masks?](../glossary#attention-mask)
|
813 |
output_attentions (`bool`, *optional*):
|
814 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
@@ -829,28 +873,20 @@ class SiglipEncoder(nn.Module):
|
|
829 |
all_attentions = () if output_attentions else None
|
830 |
|
831 |
hidden_states = inputs_embeds
|
832 |
-
for
|
833 |
if output_hidden_states:
|
834 |
encoder_states = encoder_states + (hidden_states,)
|
835 |
if self.gradient_checkpointing and self.training:
|
836 |
-
|
837 |
-
|
838 |
-
def custom_forward(*inputs):
|
839 |
-
return module(*inputs, output_attentions)
|
840 |
-
|
841 |
-
return custom_forward
|
842 |
-
|
843 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
844 |
-
create_custom_forward(encoder_layer),
|
845 |
hidden_states,
|
846 |
attention_mask,
|
847 |
-
|
848 |
)
|
849 |
else:
|
850 |
layer_outputs = encoder_layer(
|
851 |
hidden_states,
|
852 |
attention_mask,
|
853 |
-
causal_attention_mask,
|
854 |
output_attentions=output_attentions,
|
855 |
)
|
856 |
|
@@ -909,16 +945,15 @@ class SiglipTextTransformer(nn.Module):
|
|
909 |
|
910 |
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
911 |
|
912 |
-
# note: SigLIP's text model does not use
|
913 |
# expand attention_mask
|
914 |
if attention_mask is not None:
|
915 |
-
# [
|
916 |
-
attention_mask =
|
917 |
|
918 |
encoder_outputs = self.encoder(
|
919 |
inputs_embeds=hidden_states,
|
920 |
-
attention_mask=
|
921 |
-
causal_attention_mask=None,
|
922 |
output_attentions=output_attentions,
|
923 |
output_hidden_states=output_hidden_states,
|
924 |
return_dict=return_dict,
|
@@ -985,7 +1020,8 @@ class SiglipTextModel(SiglipPreTrainedModel):
|
|
985 |
>>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
|
986 |
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
987 |
|
988 |
-
>>>
|
|
|
989 |
|
990 |
>>> outputs = model(**inputs)
|
991 |
>>> last_hidden_state = outputs.last_hidden_state
|
@@ -1130,7 +1166,7 @@ class SiglipVisionModel(SiglipPreTrainedModel):
|
|
1130 |
|
1131 |
>>> outputs = model(**inputs)
|
1132 |
>>> last_hidden_state = outputs.last_hidden_state
|
1133 |
-
>>> pooled_output = outputs.pooler_output # pooled
|
1134 |
```"""
|
1135 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1136 |
|
@@ -1164,19 +1200,11 @@ class SiglipModel(SiglipPreTrainedModel):
|
|
1164 |
text_config = config.text_config
|
1165 |
vision_config = config.vision_config
|
1166 |
|
1167 |
-
self.text_model =
|
1168 |
-
self.vision_model =
|
1169 |
|
1170 |
-
self.
|
1171 |
-
|
1172 |
-
1,
|
1173 |
-
)
|
1174 |
-
)
|
1175 |
-
self.bias = nn.Parameter(
|
1176 |
-
torch.randn(
|
1177 |
-
1,
|
1178 |
-
)
|
1179 |
-
)
|
1180 |
|
1181 |
# Initialize weights and apply final processing
|
1182 |
self.post_init()
|
@@ -1199,13 +1227,16 @@ class SiglipModel(SiglipPreTrainedModel):
|
|
1199 |
Examples:
|
1200 |
|
1201 |
```python
|
1202 |
-
>>> from transformers import AutoTokenizer,
|
|
|
1203 |
|
1204 |
-
>>> model =
|
1205 |
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
1206 |
|
1207 |
-
>>>
|
1208 |
-
>>>
|
|
|
|
|
1209 |
```"""
|
1210 |
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1211 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
@@ -1245,9 +1276,10 @@ class SiglipModel(SiglipPreTrainedModel):
|
|
1245 |
```python
|
1246 |
>>> from PIL import Image
|
1247 |
>>> import requests
|
1248 |
-
>>> from transformers import AutoProcessor,
|
|
|
1249 |
|
1250 |
-
>>> model =
|
1251 |
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1252 |
|
1253 |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
@@ -1255,7 +1287,8 @@ class SiglipModel(SiglipPreTrainedModel):
|
|
1255 |
|
1256 |
>>> inputs = processor(images=image, return_tensors="pt")
|
1257 |
|
1258 |
-
>>>
|
|
|
1259 |
```"""
|
1260 |
# Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
|
1261 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
@@ -1296,21 +1329,26 @@ class SiglipModel(SiglipPreTrainedModel):
|
|
1296 |
```python
|
1297 |
>>> from PIL import Image
|
1298 |
>>> import requests
|
1299 |
-
>>> from transformers import AutoProcessor,
|
|
|
1300 |
|
1301 |
-
>>> model =
|
1302 |
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1303 |
|
1304 |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1305 |
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1306 |
|
1307 |
-
>>>
|
1308 |
-
|
1309 |
-
|
1310 |
|
1311 |
-
>>>
|
1312 |
-
|
1313 |
-
|
|
|
|
|
|
|
|
|
1314 |
```"""
|
1315 |
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1316 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
@@ -1343,11 +1381,9 @@ class SiglipModel(SiglipPreTrainedModel):
|
|
1343 |
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1344 |
|
1345 |
# cosine similarity as logits
|
1346 |
-
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.
|
1347 |
logits_per_image = logits_per_text.t()
|
1348 |
|
1349 |
-
z = torch.matmul(image_embeds, text_embeds.t()) * self.temperature.exp()
|
1350 |
-
|
1351 |
loss = None
|
1352 |
if return_loss:
|
1353 |
raise NotImplementedError("SigLIP loss to be implemented")
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
|
|
15 |
""" PyTorch Siglip model."""
|
16 |
|
17 |
|
18 |
+
import math
|
19 |
+
import warnings
|
20 |
from dataclasses import dataclass
|
21 |
from typing import Any, Optional, Tuple, Union
|
22 |
|
23 |
+
import numpy as np
|
24 |
import torch
|
25 |
import torch.nn.functional as F
|
26 |
import torch.utils.checkpoint
|
27 |
from torch import nn
|
28 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
29 |
+
|
30 |
from transformers.activations import ACT2FN
|
31 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
32 |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
33 |
from transformers.modeling_utils import PreTrainedModel
|
34 |
from transformers.utils import (
|
|
|
39 |
logging,
|
40 |
replace_return_docstrings,
|
41 |
)
|
|
|
42 |
from .configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig
|
43 |
|
44 |
|
|
|
69 |
)
|
70 |
|
71 |
|
72 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
73 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
74 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
75 |
+
def norm_cdf(x):
|
76 |
+
# Computes standard normal cumulative distribution function
|
77 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
78 |
+
|
79 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
80 |
+
warnings.warn(
|
81 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
82 |
+
"The distribution of values may be incorrect.",
|
83 |
+
stacklevel=2,
|
84 |
+
)
|
85 |
+
|
86 |
+
# Values are generated by using a truncated uniform distribution and
|
87 |
+
# then using the inverse CDF for the normal distribution.
|
88 |
+
# Get upper and lower cdf values
|
89 |
+
l = norm_cdf((a - mean) / std)
|
90 |
+
u = norm_cdf((b - mean) / std)
|
91 |
+
|
92 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
93 |
+
# [2l-1, 2u-1].
|
94 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
95 |
+
|
96 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
97 |
+
# standard normal
|
98 |
+
if tensor.dtype == torch.bfloat16:
|
99 |
+
tensor = tensor.to(torch.float32)
|
100 |
+
tensor.erfinv_()
|
101 |
+
tensor = tensor.to(torch.bfloat16)
|
102 |
+
else:
|
103 |
+
tensor.erfinv_()
|
104 |
+
|
105 |
+
# Transform to proper mean, std
|
106 |
+
tensor.mul_(std * math.sqrt(2.0))
|
107 |
+
tensor.add_(mean)
|
108 |
+
|
109 |
+
# Clamp to ensure it's in the proper range
|
110 |
+
tensor.clamp_(min=a, max=b)
|
111 |
+
|
112 |
+
|
113 |
+
def trunc_normal_tf_(
|
114 |
+
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
115 |
+
) -> torch.Tensor:
|
116 |
+
"""Fills the input Tensor with values drawn from a truncated
|
117 |
+
normal distribution. The values are effectively drawn from the
|
118 |
+
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
119 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
120 |
+
the bounds. The method used for generating the random values works
|
121 |
+
best when :math:`a \\leq \text{mean} \\leq b`.
|
122 |
+
|
123 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
124 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
125 |
+
and the result is subsquently scaled and shifted by the mean and std args.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
tensor: an n-dimensional `torch.Tensor`
|
129 |
+
mean: the mean of the normal distribution
|
130 |
+
std: the standard deviation of the normal distribution
|
131 |
+
a: the minimum cutoff value
|
132 |
+
b: the maximum cutoff value
|
133 |
"""
|
134 |
+
with torch.no_grad():
|
135 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
136 |
+
tensor.mul_(std).add_(mean)
|
137 |
+
|
138 |
|
139 |
+
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
140 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
141 |
+
if mode == "fan_in":
|
142 |
+
denom = fan_in
|
143 |
+
elif mode == "fan_out":
|
144 |
+
denom = fan_out
|
145 |
+
elif mode == "fan_avg":
|
146 |
+
denom = (fan_in + fan_out) / 2
|
147 |
|
148 |
+
variance = scale / denom
|
149 |
|
150 |
+
if distribution == "truncated_normal":
|
151 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
152 |
+
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
153 |
+
elif distribution == "normal":
|
154 |
+
with torch.no_grad():
|
155 |
+
tensor.normal_(std=math.sqrt(variance))
|
156 |
+
elif distribution == "uniform":
|
157 |
+
bound = math.sqrt(3 * variance)
|
158 |
+
with torch.no_grad():
|
159 |
+
tensor.uniform_(-bound, bound)
|
160 |
+
else:
|
161 |
+
raise ValueError(f"invalid distribution {distribution}")
|
162 |
|
163 |
|
164 |
+
def lecun_normal_(tensor):
|
165 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
|
|
|
|
166 |
|
167 |
|
168 |
+
def default_flax_embed_init(tensor):
|
169 |
+
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
|
|
|
|
|
|
170 |
|
171 |
|
172 |
@dataclass
|
|
|
245 |
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
246 |
The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
|
247 |
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
248 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
|
|
249 |
text_model_output(`BaseModelOutputWithPooling`):
|
250 |
The output of the [`SiglipTextModel`].
|
251 |
vision_model_output(`BaseModelOutputWithPooling`):
|
|
|
330 |
return embeddings
|
331 |
|
332 |
|
|
|
333 |
class SiglipAttention(nn.Module):
|
334 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
335 |
|
336 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
337 |
def __init__(self, config):
|
338 |
super().__init__()
|
339 |
self.config = config
|
|
|
353 |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
354 |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
355 |
|
|
|
|
|
|
|
356 |
def forward(
|
357 |
self,
|
358 |
hidden_states: torch.Tensor,
|
359 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
360 |
output_attentions: Optional[bool] = False,
|
361 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
362 |
"""Input shape: Batch x Time x Channel"""
|
363 |
|
364 |
+
batch_size, q_len, _ = hidden_states.size()
|
365 |
|
366 |
+
query_states = self.q_proj(hidden_states)
|
367 |
+
key_states = self.k_proj(hidden_states)
|
368 |
+
value_states = self.v_proj(hidden_states)
|
|
|
369 |
|
370 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
371 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
372 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
373 |
|
374 |
+
k_v_seq_len = key_states.shape[-2]
|
375 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
376 |
|
377 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
378 |
raise ValueError(
|
379 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
380 |
f" {attn_weights.size()}"
|
381 |
)
|
382 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
383 |
if attention_mask is not None:
|
384 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
385 |
raise ValueError(
|
386 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
387 |
)
|
388 |
+
attn_weights = attn_weights + attention_mask
|
|
|
389 |
|
390 |
+
# upcast attention to fp32
|
391 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
392 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
393 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
394 |
|
395 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
raise ValueError(
|
397 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
398 |
f" {attn_output.size()}"
|
399 |
)
|
400 |
|
401 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
402 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
|
|
403 |
|
404 |
attn_output = self.out_proj(attn_output)
|
405 |
|
406 |
+
return attn_output, attn_weights
|
407 |
|
408 |
|
409 |
class SiglipFlashAttention2(SiglipAttention):
|
|
|
628 |
self,
|
629 |
hidden_states: torch.Tensor,
|
630 |
attention_mask: torch.Tensor,
|
|
|
631 |
output_attentions: Optional[bool] = False,
|
632 |
) -> Tuple[torch.FloatTensor]:
|
633 |
"""
|
634 |
Args:
|
635 |
+
hidden_states (`torch.FloatTensor`):
|
636 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
637 |
+
attention_mask (`torch.FloatTensor`):
|
638 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
639 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
640 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
641 |
returned tensors for more detail.
|
642 |
"""
|
|
|
646 |
hidden_states, attn_weights = self.self_attn(
|
647 |
hidden_states=hidden_states,
|
648 |
attention_mask=attention_mask,
|
|
|
649 |
output_attentions=output_attentions,
|
650 |
)
|
651 |
hidden_states = residual + hidden_states
|
|
|
675 |
|
676 |
def _init_weights(self, module):
|
677 |
"""Initialize the weights"""
|
678 |
+
|
679 |
+
if isinstance(module, SiglipVisionEmbeddings):
|
680 |
+
width = (
|
681 |
+
self.config.vision_config.hidden_size
|
682 |
+
if isinstance(self.config, SiglipConfig)
|
683 |
+
else self.config.hidden_size
|
684 |
+
)
|
685 |
+
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
|
686 |
+
elif isinstance(module, nn.Embedding):
|
687 |
+
default_flax_embed_init(module.weight)
|
688 |
elif isinstance(module, SiglipAttention):
|
689 |
+
nn.init.normal_(module.q_proj.weight)
|
690 |
+
nn.init.normal_(module.k_proj.weight)
|
691 |
+
nn.init.normal_(module.v_proj.weight)
|
692 |
+
nn.init.normal_(module.out_proj.weight)
|
693 |
+
nn.init.zeros_(module.q_proj.bias)
|
694 |
+
nn.init.zeros_(module.k_proj.bias)
|
695 |
+
nn.init.zeros_(module.v_proj.bias)
|
696 |
+
nn.init.zeros_(module.out_proj.bias)
|
697 |
elif isinstance(module, SiglipMLP):
|
698 |
+
nn.init.normal_(module.fc1.weight)
|
699 |
+
nn.init.normal_(module.fc2.weight)
|
700 |
+
nn.init.normal_(module.fc1.bias, std=1e-6)
|
701 |
+
nn.init.normal_(module.fc2.bias, std=1e-6)
|
702 |
+
elif isinstance(module, SiglipMultiheadAttentionPoolingHead):
|
703 |
+
nn.init.normal_(module.probe.data)
|
704 |
+
nn.init.normal_(module.attention.in_proj_weight.data)
|
705 |
+
nn.init.zeros_(module.attention.in_proj_bias.data)
|
706 |
+
elif isinstance(module, SiglipModel):
|
707 |
+
logit_scale_init = torch.log(torch.tensor(1.0))
|
708 |
+
module.logit_scale.data.fill_(logit_scale_init)
|
709 |
+
module.logit_bias.data.zero_()
|
710 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
711 |
+
lecun_normal_(module.weight)
|
712 |
+
if module.bias is not None:
|
713 |
+
nn.init.zeros_(module.bias)
|
714 |
+
elif isinstance(module, nn.LayerNorm):
|
715 |
module.bias.data.zero_()
|
716 |
module.weight.data.fill_(1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
717 |
|
718 |
|
719 |
SIGLIP_START_DOCSTRING = r"""
|
|
|
832 |
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
833 |
self.gradient_checkpointing = False
|
834 |
|
835 |
+
# Ignore copy
|
836 |
def forward(
|
837 |
self,
|
838 |
inputs_embeds,
|
839 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
840 |
output_attentions: Optional[bool] = None,
|
841 |
output_hidden_states: Optional[bool] = None,
|
842 |
return_dict: Optional[bool] = None,
|
|
|
853 |
- 1 for tokens that are **not masked**,
|
854 |
- 0 for tokens that are **masked**.
|
855 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
856 |
[What are attention masks?](../glossary#attention-mask)
|
857 |
output_attentions (`bool`, *optional*):
|
858 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
|
873 |
all_attentions = () if output_attentions else None
|
874 |
|
875 |
hidden_states = inputs_embeds
|
876 |
+
for encoder_layer in self.layers:
|
877 |
if output_hidden_states:
|
878 |
encoder_states = encoder_states + (hidden_states,)
|
879 |
if self.gradient_checkpointing and self.training:
|
880 |
+
layer_outputs = self._gradient_checkpointing_func(
|
881 |
+
encoder_layer.__call__,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
882 |
hidden_states,
|
883 |
attention_mask,
|
884 |
+
output_attentions,
|
885 |
)
|
886 |
else:
|
887 |
layer_outputs = encoder_layer(
|
888 |
hidden_states,
|
889 |
attention_mask,
|
|
|
890 |
output_attentions=output_attentions,
|
891 |
)
|
892 |
|
|
|
945 |
|
946 |
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
947 |
|
948 |
+
# note: SigLIP's text model does not use a causal mask, unlike the original CLIP model.
|
949 |
# expand attention_mask
|
950 |
if attention_mask is not None:
|
951 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
952 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
953 |
|
954 |
encoder_outputs = self.encoder(
|
955 |
inputs_embeds=hidden_states,
|
956 |
+
attention_mask=attention_mask,
|
|
|
957 |
output_attentions=output_attentions,
|
958 |
output_hidden_states=output_hidden_states,
|
959 |
return_dict=return_dict,
|
|
|
1020 |
>>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
|
1021 |
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
1022 |
|
1023 |
+
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
1024 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
1025 |
|
1026 |
>>> outputs = model(**inputs)
|
1027 |
>>> last_hidden_state = outputs.last_hidden_state
|
|
|
1166 |
|
1167 |
>>> outputs = model(**inputs)
|
1168 |
>>> last_hidden_state = outputs.last_hidden_state
|
1169 |
+
>>> pooled_output = outputs.pooler_output # pooled features
|
1170 |
```"""
|
1171 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1172 |
|
|
|
1200 |
text_config = config.text_config
|
1201 |
vision_config = config.vision_config
|
1202 |
|
1203 |
+
self.text_model = SiglipTextTransformer(text_config)
|
1204 |
+
self.vision_model = SiglipVisionTransformer(vision_config)
|
1205 |
|
1206 |
+
self.logit_scale = nn.Parameter(torch.randn(1))
|
1207 |
+
self.logit_bias = nn.Parameter(torch.randn(1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1208 |
|
1209 |
# Initialize weights and apply final processing
|
1210 |
self.post_init()
|
|
|
1227 |
Examples:
|
1228 |
|
1229 |
```python
|
1230 |
+
>>> from transformers import AutoTokenizer, AutoModel
|
1231 |
+
>>> import torch
|
1232 |
|
1233 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
1234 |
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
1235 |
|
1236 |
+
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
1237 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
1238 |
+
>>> with torch.no_grad():
|
1239 |
+
... text_features = model.get_text_features(**inputs)
|
1240 |
```"""
|
1241 |
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1242 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
1276 |
```python
|
1277 |
>>> from PIL import Image
|
1278 |
>>> import requests
|
1279 |
+
>>> from transformers import AutoProcessor, AutoModel
|
1280 |
+
>>> import torch
|
1281 |
|
1282 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
1283 |
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1284 |
|
1285 |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
|
1287 |
|
1288 |
>>> inputs = processor(images=image, return_tensors="pt")
|
1289 |
|
1290 |
+
>>> with torch.no_grad():
|
1291 |
+
... image_features = model.get_image_features(**inputs)
|
1292 |
```"""
|
1293 |
# Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
|
1294 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
1329 |
```python
|
1330 |
>>> from PIL import Image
|
1331 |
>>> import requests
|
1332 |
+
>>> from transformers import AutoProcessor, AutoModel
|
1333 |
+
>>> import torch
|
1334 |
|
1335 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
1336 |
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1337 |
|
1338 |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1339 |
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1340 |
|
1341 |
+
>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"]
|
1342 |
+
>>> # important: we pass `padding=max_length` since the model was trained with this
|
1343 |
+
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
|
1344 |
|
1345 |
+
>>> with torch.no_grad():
|
1346 |
+
... outputs = model(**inputs)
|
1347 |
+
|
1348 |
+
>>> logits_per_image = outputs.logits_per_image
|
1349 |
+
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
|
1350 |
+
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
|
1351 |
+
31.9% that image 0 is 'a photo of 2 cats'
|
1352 |
```"""
|
1353 |
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1354 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
1381 |
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1382 |
|
1383 |
# cosine similarity as logits
|
1384 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.logit_scale.exp() + self.logit_bias
|
1385 |
logits_per_image = logits_per_text.t()
|
1386 |
|
|
|
|
|
1387 |
loss = None
|
1388 |
if return_loss:
|
1389 |
raise NotImplementedError("SigLIP loss to be implemented")
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Image/Text processor class for SigLIP.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
from transformers.feature_extraction_utils import BatchFeature
|
22 |
+
from transformers.image_utils import ImageInput
|
23 |
+
from transformers.processing_utils import ProcessorMixin
|
24 |
+
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
25 |
+
from transformers.utils import TensorType
|
26 |
+
|
27 |
+
|
28 |
+
class SiglipProcessor(ProcessorMixin):
|
29 |
+
r"""
|
30 |
+
Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.
|
31 |
+
|
32 |
+
[`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
|
33 |
+
[`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
image_processor ([`SiglipImageProcessor`]):
|
37 |
+
The image processor is a required input.
|
38 |
+
tokenizer ([`SiglipTokenizer`]):
|
39 |
+
The tokenizer is a required input.
|
40 |
+
"""
|
41 |
+
|
42 |
+
attributes = ["image_processor", "tokenizer"]
|
43 |
+
image_processor_class = "SiglipImageProcessor"
|
44 |
+
tokenizer_class = "SiglipTokenizer"
|
45 |
+
|
46 |
+
def __init__(self, image_processor, tokenizer):
|
47 |
+
super().__init__(image_processor, tokenizer)
|
48 |
+
|
49 |
+
def __call__(
|
50 |
+
self,
|
51 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
52 |
+
images: ImageInput = None,
|
53 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
54 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
55 |
+
max_length: int = None,
|
56 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
57 |
+
) -> BatchFeature:
|
58 |
+
"""
|
59 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
60 |
+
and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
|
61 |
+
the text. To prepare the image(s), this method forwards the `images` argument to
|
62 |
+
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
63 |
+
of the above two methods for more information.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
67 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
68 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
69 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
70 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
71 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
72 |
+
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
|
73 |
+
number of channels, H and W are image height and width.
|
74 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
75 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
76 |
+
index) among:
|
77 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
78 |
+
sequence if provided).
|
79 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
80 |
+
acceptable input length for the model if that argument is not provided.
|
81 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
82 |
+
lengths).
|
83 |
+
max_length (`int`, *optional*):
|
84 |
+
Maximum length of the returned list and optionally padding length (see above).
|
85 |
+
truncation (`bool`, *optional*):
|
86 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
87 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
88 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
89 |
+
|
90 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
91 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
92 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
93 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
97 |
+
|
98 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
99 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
100 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
101 |
+
`None`).
|
102 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
103 |
+
"""
|
104 |
+
|
105 |
+
if text is None and images is None:
|
106 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
107 |
+
|
108 |
+
if text is not None:
|
109 |
+
encoding = self.tokenizer(
|
110 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
111 |
+
)
|
112 |
+
|
113 |
+
if images is not None:
|
114 |
+
image_features = self.image_processor(images, return_tensors=return_tensors)
|
115 |
+
|
116 |
+
if text is not None and images is not None:
|
117 |
+
encoding["pixel_values"] = image_features.pixel_values
|
118 |
+
return encoding
|
119 |
+
elif text is not None:
|
120 |
+
return encoding
|
121 |
+
else:
|
122 |
+
return BatchFeature(data=dict(**image_features), tensor_type=return_tensors)
|
123 |
+
|
124 |
+
def decode(self, *args, **kwargs):
|
125 |
+
"""
|
126 |
+
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
127 |
+
the docstring of this method for more information.
|
128 |
+
"""
|
129 |
+
return self.tokenizer.decode(*args, **kwargs)
|
130 |
+
|
131 |
+
def batch_decode(self, *args, **kwargs):
|
132 |
+
"""
|
133 |
+
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
134 |
+
refer to the docstring of this method for more information.
|
135 |
+
"""
|
136 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
137 |
+
|
138 |
+
@property
|
139 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip
|
140 |
+
def model_input_names(self):
|
141 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
142 |
+
image_processor_input_names = self.image_processor.model_input_names
|
143 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for SigLIP model."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
import re
|
19 |
+
import string
|
20 |
+
import warnings
|
21 |
+
from shutil import copyfile
|
22 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
23 |
+
|
24 |
+
import sentencepiece as spm
|
25 |
+
|
26 |
+
from transformers.convert_slow_tokenizer import import_protobuf
|
27 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
28 |
+
from transformers.tokenization_utils_base import AddedToken
|
29 |
+
|
30 |
+
|
31 |
+
if TYPE_CHECKING:
|
32 |
+
from transformers.tokenization_utils_base import TextInput
|
33 |
+
from transformers.utils import logging, requires_backends
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
39 |
+
|
40 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
41 |
+
"vocab_file": {
|
42 |
+
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/spiece.model",
|
43 |
+
}
|
44 |
+
}
|
45 |
+
|
46 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
47 |
+
"google/siglip-base-patch16-224": 256,
|
48 |
+
}
|
49 |
+
|
50 |
+
SPIECE_UNDERLINE = "▁"
|
51 |
+
|
52 |
+
|
53 |
+
class SiglipTokenizer(PreTrainedTokenizer):
|
54 |
+
"""
|
55 |
+
Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
56 |
+
|
57 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
58 |
+
this superclass for more information regarding those methods.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
vocab_file (`str`):
|
62 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
63 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
64 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
65 |
+
The end of sequence token.
|
66 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
67 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
68 |
+
token instead.
|
69 |
+
pad_token (`str`, *optional*, defaults to `"</s>"`):
|
70 |
+
The token used for padding, for example when batching sequences of different lengths.
|
71 |
+
additional_special_tokens (`List[str]`, *optional*):
|
72 |
+
Additional special tokens used by the tokenizer.
|
73 |
+
sp_model_kwargs (`dict`, *optional*):
|
74 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
75 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
76 |
+
to set:
|
77 |
+
|
78 |
+
- `enable_sampling`: Enable subword regularization.
|
79 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
80 |
+
|
81 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
82 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
83 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
84 |
+
using forward-filtering-and-backward-sampling algorithm.
|
85 |
+
|
86 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
87 |
+
BPE-dropout.
|
88 |
+
model_max_length (`int`, *optional*, defaults to 64):
|
89 |
+
The maximum length (in number of tokens) for model inputs.
|
90 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
91 |
+
Whether or not to lowercase the input when tokenizing.
|
92 |
+
"""
|
93 |
+
|
94 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
95 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
96 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
97 |
+
model_input_names = ["input_ids", "attention_mask"]
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
vocab_file,
|
102 |
+
eos_token="</s>",
|
103 |
+
unk_token="<unk>",
|
104 |
+
pad_token="</s>",
|
105 |
+
additional_special_tokens=None,
|
106 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
107 |
+
model_max_length=64,
|
108 |
+
do_lower_case=True,
|
109 |
+
**kwargs,
|
110 |
+
) -> None:
|
111 |
+
requires_backends(self, "protobuf")
|
112 |
+
|
113 |
+
pad_token = (
|
114 |
+
AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
115 |
+
if isinstance(pad_token, str)
|
116 |
+
else pad_token
|
117 |
+
)
|
118 |
+
unk_token = (
|
119 |
+
AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
120 |
+
if isinstance(unk_token, str)
|
121 |
+
else unk_token
|
122 |
+
)
|
123 |
+
eos_token = (
|
124 |
+
AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
125 |
+
if isinstance(eos_token, str)
|
126 |
+
else eos_token
|
127 |
+
)
|
128 |
+
|
129 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
130 |
+
|
131 |
+
self.do_lower_case = do_lower_case
|
132 |
+
self.vocab_file = vocab_file
|
133 |
+
|
134 |
+
self.sp_model = self.get_spm_processor()
|
135 |
+
self.vocab_file = vocab_file
|
136 |
+
|
137 |
+
super().__init__(
|
138 |
+
eos_token=eos_token,
|
139 |
+
unk_token=unk_token,
|
140 |
+
pad_token=pad_token,
|
141 |
+
additional_special_tokens=additional_special_tokens,
|
142 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
143 |
+
model_max_length=model_max_length,
|
144 |
+
do_lower_case=do_lower_case,
|
145 |
+
**kwargs,
|
146 |
+
)
|
147 |
+
|
148 |
+
def get_spm_processor(self):
|
149 |
+
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
150 |
+
with open(self.vocab_file, "rb") as f:
|
151 |
+
sp_model = f.read()
|
152 |
+
model_pb2 = import_protobuf()
|
153 |
+
model = model_pb2.ModelProto.FromString(sp_model)
|
154 |
+
normalizer_spec = model_pb2.NormalizerSpec()
|
155 |
+
normalizer_spec.add_dummy_prefix = False
|
156 |
+
model.normalizer_spec.MergeFrom(normalizer_spec)
|
157 |
+
sp_model = model.SerializeToString()
|
158 |
+
tokenizer.LoadFromSerializedProto(sp_model)
|
159 |
+
return tokenizer
|
160 |
+
|
161 |
+
@property
|
162 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size
|
163 |
+
def vocab_size(self):
|
164 |
+
return self.sp_model.get_piece_size()
|
165 |
+
|
166 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab
|
167 |
+
def get_vocab(self):
|
168 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
169 |
+
vocab.update(self.added_tokens_encoder)
|
170 |
+
return vocab
|
171 |
+
|
172 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask
|
173 |
+
def get_special_tokens_mask(
|
174 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
175 |
+
) -> List[int]:
|
176 |
+
"""
|
177 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
178 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
token_ids_0 (`List[int]`):
|
182 |
+
List of IDs.
|
183 |
+
token_ids_1 (`List[int]`, *optional*):
|
184 |
+
Optional second list of IDs for sequence pairs.
|
185 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
186 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
190 |
+
"""
|
191 |
+
if already_has_special_tokens:
|
192 |
+
return super().get_special_tokens_mask(
|
193 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
194 |
+
)
|
195 |
+
|
196 |
+
# normal case: some special tokens
|
197 |
+
if token_ids_1 is None:
|
198 |
+
return ([0] * len(token_ids_0)) + [1]
|
199 |
+
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
200 |
+
|
201 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present
|
202 |
+
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
|
203 |
+
"""Do not add eos again if user already added it."""
|
204 |
+
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
|
205 |
+
warnings.warn(
|
206 |
+
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
|
207 |
+
" eos tokens being added."
|
208 |
+
)
|
209 |
+
return token_ids
|
210 |
+
else:
|
211 |
+
return token_ids + [self.eos_token_id]
|
212 |
+
|
213 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences
|
214 |
+
def create_token_type_ids_from_sequences(
|
215 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
216 |
+
) -> List[int]:
|
217 |
+
"""
|
218 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
219 |
+
use of token type ids, therefore a list of zeros is returned.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
token_ids_0 (`List[int]`):
|
223 |
+
List of IDs.
|
224 |
+
token_ids_1 (`List[int]`, *optional*):
|
225 |
+
Optional second list of IDs for sequence pairs.
|
226 |
+
|
227 |
+
Returns:
|
228 |
+
`List[int]`: List of zeros.
|
229 |
+
"""
|
230 |
+
eos = [self.eos_token_id]
|
231 |
+
|
232 |
+
if token_ids_1 is None:
|
233 |
+
return len(token_ids_0 + eos) * [0]
|
234 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
235 |
+
|
236 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens
|
237 |
+
def build_inputs_with_special_tokens(
|
238 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
239 |
+
) -> List[int]:
|
240 |
+
"""
|
241 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
242 |
+
adding special tokens. A sequence has the following format:
|
243 |
+
|
244 |
+
- single sequence: `X </s>`
|
245 |
+
- pair of sequences: `A </s> B </s>`
|
246 |
+
|
247 |
+
Args:
|
248 |
+
token_ids_0 (`List[int]`):
|
249 |
+
List of IDs to which the special tokens will be added.
|
250 |
+
token_ids_1 (`List[int]`, *optional*):
|
251 |
+
Optional second list of IDs for sequence pairs.
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
255 |
+
"""
|
256 |
+
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
|
257 |
+
if token_ids_1 is None:
|
258 |
+
return token_ids_0
|
259 |
+
else:
|
260 |
+
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
|
261 |
+
return token_ids_0 + token_ids_1
|
262 |
+
|
263 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__
|
264 |
+
def __getstate__(self):
|
265 |
+
state = self.__dict__.copy()
|
266 |
+
state["sp_model"] = None
|
267 |
+
return state
|
268 |
+
|
269 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__
|
270 |
+
def __setstate__(self, d):
|
271 |
+
self.__dict__ = d
|
272 |
+
|
273 |
+
# for backward compatibility
|
274 |
+
if not hasattr(self, "sp_model_kwargs"):
|
275 |
+
self.sp_model_kwargs = {}
|
276 |
+
|
277 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
278 |
+
self.sp_model.Load(self.vocab_file)
|
279 |
+
|
280 |
+
def remove_punctuation(self, text: str) -> str:
|
281 |
+
return text.translate(str.maketrans("", "", string.punctuation))
|
282 |
+
|
283 |
+
# source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
|
284 |
+
def canonicalize_text(self, text, *, keep_punctuation_exact_string=None):
|
285 |
+
"""Returns canonicalized `text` (puncuation removed).
|
286 |
+
|
287 |
+
Args:
|
288 |
+
text (`str`):
|
289 |
+
String to be canonicalized.
|
290 |
+
keep_punctuation_exact_string (`str`, *optional*):
|
291 |
+
If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}'
|
292 |
+
(but will still remove '{' and '}' that appear separately).
|
293 |
+
"""
|
294 |
+
if keep_punctuation_exact_string:
|
295 |
+
text = keep_punctuation_exact_string.join(
|
296 |
+
self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string)
|
297 |
+
)
|
298 |
+
else:
|
299 |
+
text = self.remove_punctuation(text)
|
300 |
+
text = re.sub(r"\s+", " ", text)
|
301 |
+
text = text.strip()
|
302 |
+
|
303 |
+
return text
|
304 |
+
|
305 |
+
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
|
306 |
+
"""
|
307 |
+
Converts a string to a list of tokens.
|
308 |
+
"""
|
309 |
+
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)
|
310 |
+
|
311 |
+
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
312 |
+
tokens = tokens[1:]
|
313 |
+
return tokens
|
314 |
+
|
315 |
+
@property
|
316 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length
|
317 |
+
def unk_token_length(self):
|
318 |
+
return len(self.sp_model.encode(str(self.unk_token)))
|
319 |
+
|
320 |
+
def _tokenize(self, text, **kwargs):
|
321 |
+
"""
|
322 |
+
Returns a tokenized string.
|
323 |
+
|
324 |
+
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
325 |
+
SPIECE_UNDERLINE.
|
326 |
+
|
327 |
+
For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`.
|
328 |
+
|
329 |
+
Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
330 |
+
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
331 |
+
"""
|
332 |
+
text = self.canonicalize_text(text, keep_punctuation_exact_string=None)
|
333 |
+
tokens = self.sp_model.encode(text, out_type=str)
|
334 |
+
|
335 |
+
# 1. Encode string + prefix ex: "<unk> Hey"
|
336 |
+
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
337 |
+
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
|
338 |
+
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
|
339 |
+
|
340 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id
|
341 |
+
def _convert_token_to_id(self, token):
|
342 |
+
"""Converts a token (str) in an id using the vocab."""
|
343 |
+
return self.sp_model.piece_to_id(token)
|
344 |
+
|
345 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token
|
346 |
+
def _convert_id_to_token(self, index):
|
347 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
348 |
+
token = self.sp_model.IdToPiece(index)
|
349 |
+
return token
|
350 |
+
|
351 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.convert_tokens_to_string
|
352 |
+
def convert_tokens_to_string(self, tokens):
|
353 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
354 |
+
current_sub_tokens = []
|
355 |
+
# since we manually add the prefix space, we have to remove it
|
356 |
+
tokens[0] = tokens[0].lstrip(SPIECE_UNDERLINE)
|
357 |
+
out_string = ""
|
358 |
+
prev_is_special = False
|
359 |
+
for token in tokens:
|
360 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
361 |
+
if token in self.all_special_tokens:
|
362 |
+
if not prev_is_special:
|
363 |
+
out_string += " "
|
364 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
365 |
+
prev_is_special = True
|
366 |
+
current_sub_tokens = []
|
367 |
+
else:
|
368 |
+
current_sub_tokens.append(token)
|
369 |
+
prev_is_special = False
|
370 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
371 |
+
return out_string.strip()
|
372 |
+
|
373 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary
|
374 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
375 |
+
if not os.path.isdir(save_directory):
|
376 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
377 |
+
return
|
378 |
+
out_vocab_file = os.path.join(
|
379 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
380 |
+
)
|
381 |
+
|
382 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
383 |
+
copyfile(self.vocab_file, out_vocab_file)
|
384 |
+
elif not os.path.isfile(self.vocab_file):
|
385 |
+
with open(out_vocab_file, "wb") as fi:
|
386 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
387 |
+
fi.write(content_spiece_model)
|
388 |
+
|
389 |
+
return (out_vocab_file,)
|