use transformers siglip modeling implementation except for flash attention
Browse files- modeling_siglip.py +198 -168
modeling_siglip.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
@@ -15,14 +15,20 @@
|
|
15 |
""" PyTorch Siglip model."""
|
16 |
|
17 |
|
|
|
|
|
18 |
from dataclasses import dataclass
|
19 |
from typing import Any, Optional, Tuple, Union
|
20 |
|
|
|
21 |
import torch
|
22 |
import torch.nn.functional as F
|
23 |
import torch.utils.checkpoint
|
24 |
from torch import nn
|
|
|
|
|
25 |
from transformers.activations import ACT2FN
|
|
|
26 |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
27 |
from transformers.modeling_utils import PreTrainedModel
|
28 |
from transformers.utils import (
|
@@ -33,7 +39,6 @@ from transformers.utils import (
|
|
33 |
logging,
|
34 |
replace_return_docstrings,
|
35 |
)
|
36 |
-
|
37 |
from .configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig
|
38 |
|
39 |
|
@@ -64,32 +69,99 @@ def _get_unpad_data(attention_mask):
|
|
64 |
)
|
65 |
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
"""
|
72 |
-
|
73 |
-
|
|
|
|
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
85 |
-
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
86 |
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
caption_loss = contrastive_loss(similarity)
|
91 |
-
image_loss = contrastive_loss(similarity.t())
|
92 |
-
return (caption_loss + image_loss) / 2.0
|
93 |
|
94 |
|
95 |
@dataclass
|
@@ -168,8 +240,7 @@ class SiglipOutput(ModelOutput):
|
|
168 |
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
169 |
The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
|
170 |
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
171 |
-
The image embeddings obtained by applying the projection layer to the pooled output of
|
172 |
-
[`SiglipVisionModel`].
|
173 |
text_model_output(`BaseModelOutputWithPooling`):
|
174 |
The output of the [`SiglipTextModel`].
|
175 |
vision_model_output(`BaseModelOutputWithPooling`):
|
@@ -254,10 +325,10 @@ class SiglipTextEmbeddings(nn.Module):
|
|
254 |
return embeddings
|
255 |
|
256 |
|
257 |
-
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Siglip
|
258 |
class SiglipAttention(nn.Module):
|
259 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
260 |
|
|
|
261 |
def __init__(self, config):
|
262 |
super().__init__()
|
263 |
self.config = config
|
@@ -277,86 +348,57 @@ class SiglipAttention(nn.Module):
|
|
277 |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
278 |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
279 |
|
280 |
-
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
281 |
-
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
282 |
-
|
283 |
def forward(
|
284 |
self,
|
285 |
hidden_states: torch.Tensor,
|
286 |
attention_mask: Optional[torch.Tensor] = None,
|
287 |
-
causal_attention_mask: Optional[torch.Tensor] = None,
|
288 |
output_attentions: Optional[bool] = False,
|
289 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
290 |
"""Input shape: Batch x Time x Channel"""
|
291 |
|
292 |
-
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
value_states = value_states.view(*proj_shape)
|
303 |
|
304 |
-
|
305 |
-
attn_weights = torch.
|
306 |
|
307 |
-
if attn_weights.size() != (
|
308 |
raise ValueError(
|
309 |
-
f"Attention weights should be of size {(
|
310 |
f" {attn_weights.size()}"
|
311 |
)
|
312 |
|
313 |
-
# apply the causal_attention_mask first
|
314 |
-
if causal_attention_mask is not None:
|
315 |
-
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
316 |
-
raise ValueError(
|
317 |
-
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
318 |
-
f" {causal_attention_mask.size()}"
|
319 |
-
)
|
320 |
-
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
321 |
-
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
322 |
-
|
323 |
if attention_mask is not None:
|
324 |
-
if attention_mask.size() != (
|
325 |
raise ValueError(
|
326 |
-
f"Attention mask should be of size {(
|
327 |
)
|
328 |
-
attn_weights = attn_weights
|
329 |
-
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
330 |
-
|
331 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
332 |
-
|
333 |
-
if output_attentions:
|
334 |
-
# this operation is a bit akward, but it's required to
|
335 |
-
# make sure that attn_weights keeps its gradient.
|
336 |
-
# In order to do so, attn_weights have to reshaped
|
337 |
-
# twice and have to be reused in the following
|
338 |
-
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
339 |
-
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
340 |
-
else:
|
341 |
-
attn_weights_reshaped = None
|
342 |
|
343 |
-
|
|
|
|
|
|
|
344 |
|
345 |
-
attn_output
|
346 |
-
|
347 |
-
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
348 |
raise ValueError(
|
349 |
-
f"`attn_output` should be of size {(
|
350 |
f" {attn_output.size()}"
|
351 |
)
|
352 |
|
353 |
-
attn_output = attn_output.
|
354 |
-
attn_output = attn_output.
|
355 |
-
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
356 |
|
357 |
attn_output = self.out_proj(attn_output)
|
358 |
|
359 |
-
return attn_output,
|
360 |
|
361 |
|
362 |
class SiglipFlashAttention2(SiglipAttention):
|
@@ -581,16 +623,15 @@ class SiglipEncoderLayer(nn.Module):
|
|
581 |
self,
|
582 |
hidden_states: torch.Tensor,
|
583 |
attention_mask: torch.Tensor,
|
584 |
-
causal_attention_mask: torch.Tensor,
|
585 |
output_attentions: Optional[bool] = False,
|
586 |
) -> Tuple[torch.FloatTensor]:
|
587 |
"""
|
588 |
Args:
|
589 |
-
hidden_states (`torch.FloatTensor`):
|
590 |
-
|
591 |
-
|
592 |
-
`(
|
593 |
-
output_attentions (`bool`, *optional
|
594 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
595 |
returned tensors for more detail.
|
596 |
"""
|
@@ -600,7 +641,6 @@ class SiglipEncoderLayer(nn.Module):
|
|
600 |
hidden_states, attn_weights = self.self_attn(
|
601 |
hidden_states=hidden_states,
|
602 |
attention_mask=attention_mask,
|
603 |
-
causal_attention_mask=causal_attention_mask,
|
604 |
output_attentions=output_attentions,
|
605 |
)
|
606 |
hidden_states = residual + hidden_states
|
@@ -630,39 +670,44 @@ class SiglipPreTrainedModel(PreTrainedModel):
|
|
630 |
|
631 |
def _init_weights(self, module):
|
632 |
"""Initialize the weights"""
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
nn.init.normal_(module.
|
640 |
-
|
|
|
641 |
elif isinstance(module, SiglipAttention):
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
nn.init.
|
646 |
-
nn.init.
|
647 |
-
nn.init.
|
648 |
-
nn.init.
|
|
|
649 |
elif isinstance(module, SiglipMLP):
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
)
|
654 |
-
|
655 |
-
nn.init.
|
656 |
-
nn.init.
|
657 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
658 |
module.bias.data.zero_()
|
659 |
module.weight.data.fill_(1.0)
|
660 |
-
if isinstance(module, nn.Linear) and module.bias is not None:
|
661 |
-
module.bias.data.zero_()
|
662 |
-
|
663 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
664 |
-
if isinstance(module, SiglipEncoder):
|
665 |
-
module.gradient_checkpointing = value
|
666 |
|
667 |
|
668 |
SIGLIP_START_DOCSTRING = r"""
|
@@ -781,11 +826,11 @@ class SiglipEncoder(nn.Module):
|
|
781 |
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
782 |
self.gradient_checkpointing = False
|
783 |
|
|
|
784 |
def forward(
|
785 |
self,
|
786 |
inputs_embeds,
|
787 |
attention_mask: Optional[torch.Tensor] = None,
|
788 |
-
causal_attention_mask: Optional[torch.Tensor] = None,
|
789 |
output_attentions: Optional[bool] = None,
|
790 |
output_hidden_states: Optional[bool] = None,
|
791 |
return_dict: Optional[bool] = None,
|
@@ -802,13 +847,6 @@ class SiglipEncoder(nn.Module):
|
|
802 |
- 1 for tokens that are **not masked**,
|
803 |
- 0 for tokens that are **masked**.
|
804 |
|
805 |
-
[What are attention masks?](../glossary#attention-mask)
|
806 |
-
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
807 |
-
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
808 |
-
|
809 |
-
- 1 for tokens that are **not masked**,
|
810 |
-
- 0 for tokens that are **masked**.
|
811 |
-
|
812 |
[What are attention masks?](../glossary#attention-mask)
|
813 |
output_attentions (`bool`, *optional*):
|
814 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
@@ -829,28 +867,20 @@ class SiglipEncoder(nn.Module):
|
|
829 |
all_attentions = () if output_attentions else None
|
830 |
|
831 |
hidden_states = inputs_embeds
|
832 |
-
for
|
833 |
if output_hidden_states:
|
834 |
encoder_states = encoder_states + (hidden_states,)
|
835 |
if self.gradient_checkpointing and self.training:
|
836 |
-
|
837 |
-
|
838 |
-
def custom_forward(*inputs):
|
839 |
-
return module(*inputs, output_attentions)
|
840 |
-
|
841 |
-
return custom_forward
|
842 |
-
|
843 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
844 |
-
create_custom_forward(encoder_layer),
|
845 |
hidden_states,
|
846 |
attention_mask,
|
847 |
-
|
848 |
)
|
849 |
else:
|
850 |
layer_outputs = encoder_layer(
|
851 |
hidden_states,
|
852 |
attention_mask,
|
853 |
-
causal_attention_mask,
|
854 |
output_attentions=output_attentions,
|
855 |
)
|
856 |
|
@@ -909,16 +939,15 @@ class SiglipTextTransformer(nn.Module):
|
|
909 |
|
910 |
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
911 |
|
912 |
-
# note: SigLIP's text model does not use
|
913 |
# expand attention_mask
|
914 |
if attention_mask is not None:
|
915 |
-
# [
|
916 |
-
attention_mask =
|
917 |
|
918 |
encoder_outputs = self.encoder(
|
919 |
inputs_embeds=hidden_states,
|
920 |
-
attention_mask=
|
921 |
-
causal_attention_mask=None,
|
922 |
output_attentions=output_attentions,
|
923 |
output_hidden_states=output_hidden_states,
|
924 |
return_dict=return_dict,
|
@@ -985,7 +1014,8 @@ class SiglipTextModel(SiglipPreTrainedModel):
|
|
985 |
>>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
|
986 |
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
987 |
|
988 |
-
>>>
|
|
|
989 |
|
990 |
>>> outputs = model(**inputs)
|
991 |
>>> last_hidden_state = outputs.last_hidden_state
|
@@ -1130,7 +1160,7 @@ class SiglipVisionModel(SiglipPreTrainedModel):
|
|
1130 |
|
1131 |
>>> outputs = model(**inputs)
|
1132 |
>>> last_hidden_state = outputs.last_hidden_state
|
1133 |
-
>>> pooled_output = outputs.pooler_output # pooled
|
1134 |
```"""
|
1135 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1136 |
|
@@ -1164,19 +1194,11 @@ class SiglipModel(SiglipPreTrainedModel):
|
|
1164 |
text_config = config.text_config
|
1165 |
vision_config = config.vision_config
|
1166 |
|
1167 |
-
self.text_model =
|
1168 |
-
self.vision_model =
|
1169 |
|
1170 |
-
self.
|
1171 |
-
|
1172 |
-
1,
|
1173 |
-
)
|
1174 |
-
)
|
1175 |
-
self.bias = nn.Parameter(
|
1176 |
-
torch.randn(
|
1177 |
-
1,
|
1178 |
-
)
|
1179 |
-
)
|
1180 |
|
1181 |
# Initialize weights and apply final processing
|
1182 |
self.post_init()
|
@@ -1199,13 +1221,16 @@ class SiglipModel(SiglipPreTrainedModel):
|
|
1199 |
Examples:
|
1200 |
|
1201 |
```python
|
1202 |
-
>>> from transformers import AutoTokenizer,
|
|
|
1203 |
|
1204 |
-
>>> model =
|
1205 |
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
1206 |
|
1207 |
-
>>>
|
1208 |
-
>>>
|
|
|
|
|
1209 |
```"""
|
1210 |
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1211 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
@@ -1245,9 +1270,10 @@ class SiglipModel(SiglipPreTrainedModel):
|
|
1245 |
```python
|
1246 |
>>> from PIL import Image
|
1247 |
>>> import requests
|
1248 |
-
>>> from transformers import AutoProcessor,
|
|
|
1249 |
|
1250 |
-
>>> model =
|
1251 |
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1252 |
|
1253 |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
@@ -1255,7 +1281,8 @@ class SiglipModel(SiglipPreTrainedModel):
|
|
1255 |
|
1256 |
>>> inputs = processor(images=image, return_tensors="pt")
|
1257 |
|
1258 |
-
>>>
|
|
|
1259 |
```"""
|
1260 |
# Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
|
1261 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
@@ -1296,21 +1323,26 @@ class SiglipModel(SiglipPreTrainedModel):
|
|
1296 |
```python
|
1297 |
>>> from PIL import Image
|
1298 |
>>> import requests
|
1299 |
-
>>> from transformers import AutoProcessor,
|
|
|
1300 |
|
1301 |
-
>>> model =
|
1302 |
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1303 |
|
1304 |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1305 |
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1306 |
|
1307 |
-
>>>
|
1308 |
-
|
1309 |
-
|
1310 |
|
1311 |
-
>>>
|
1312 |
-
|
1313 |
-
|
|
|
|
|
|
|
|
|
1314 |
```"""
|
1315 |
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1316 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
@@ -1343,11 +1375,9 @@ class SiglipModel(SiglipPreTrainedModel):
|
|
1343 |
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1344 |
|
1345 |
# cosine similarity as logits
|
1346 |
-
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.
|
1347 |
logits_per_image = logits_per_text.t()
|
1348 |
|
1349 |
-
z = torch.matmul(image_embeds, text_embeds.t()) * self.temperature.exp()
|
1350 |
-
|
1351 |
loss = None
|
1352 |
if return_loss:
|
1353 |
raise NotImplementedError("SigLIP loss to be implemented")
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
|
|
15 |
""" PyTorch Siglip model."""
|
16 |
|
17 |
|
18 |
+
import math
|
19 |
+
import warnings
|
20 |
from dataclasses import dataclass
|
21 |
from typing import Any, Optional, Tuple, Union
|
22 |
|
23 |
+
import numpy as np
|
24 |
import torch
|
25 |
import torch.nn.functional as F
|
26 |
import torch.utils.checkpoint
|
27 |
from torch import nn
|
28 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
29 |
+
|
30 |
from transformers.activations import ACT2FN
|
31 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
32 |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
33 |
from transformers.modeling_utils import PreTrainedModel
|
34 |
from transformers.utils import (
|
|
|
39 |
logging,
|
40 |
replace_return_docstrings,
|
41 |
)
|
|
|
42 |
from .configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig
|
43 |
|
44 |
|
|
|
69 |
)
|
70 |
|
71 |
|
72 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
73 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
74 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
75 |
+
def norm_cdf(x):
|
76 |
+
# Computes standard normal cumulative distribution function
|
77 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
78 |
+
|
79 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
80 |
+
warnings.warn(
|
81 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
82 |
+
"The distribution of values may be incorrect.",
|
83 |
+
stacklevel=2,
|
84 |
+
)
|
85 |
+
|
86 |
+
# Values are generated by using a truncated uniform distribution and
|
87 |
+
# then using the inverse CDF for the normal distribution.
|
88 |
+
# Get upper and lower cdf values
|
89 |
+
l = norm_cdf((a - mean) / std)
|
90 |
+
u = norm_cdf((b - mean) / std)
|
91 |
+
|
92 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
93 |
+
# [2l-1, 2u-1].
|
94 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
95 |
+
|
96 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
97 |
+
# standard normal
|
98 |
+
tensor.erfinv_()
|
99 |
+
|
100 |
+
# Transform to proper mean, std
|
101 |
+
tensor.mul_(std * math.sqrt(2.0))
|
102 |
+
tensor.add_(mean)
|
103 |
+
|
104 |
+
# Clamp to ensure it's in the proper range
|
105 |
+
tensor.clamp_(min=a, max=b)
|
106 |
+
|
107 |
+
|
108 |
+
def trunc_normal_tf_(
|
109 |
+
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
110 |
+
) -> torch.Tensor:
|
111 |
+
"""Fills the input Tensor with values drawn from a truncated
|
112 |
+
normal distribution. The values are effectively drawn from the
|
113 |
+
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
114 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
115 |
+
the bounds. The method used for generating the random values works
|
116 |
+
best when :math:`a \\leq \text{mean} \\leq b`.
|
117 |
+
|
118 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
119 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
120 |
+
and the result is subsquently scaled and shifted by the mean and std args.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
tensor: an n-dimensional `torch.Tensor`
|
124 |
+
mean: the mean of the normal distribution
|
125 |
+
std: the standard deviation of the normal distribution
|
126 |
+
a: the minimum cutoff value
|
127 |
+
b: the maximum cutoff value
|
128 |
"""
|
129 |
+
with torch.no_grad():
|
130 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
131 |
+
tensor.mul_(std).add_(mean)
|
132 |
+
|
133 |
|
134 |
+
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
135 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
136 |
+
if mode == "fan_in":
|
137 |
+
denom = fan_in
|
138 |
+
elif mode == "fan_out":
|
139 |
+
denom = fan_out
|
140 |
+
elif mode == "fan_avg":
|
141 |
+
denom = (fan_in + fan_out) / 2
|
142 |
|
143 |
+
variance = scale / denom
|
144 |
|
145 |
+
if distribution == "truncated_normal":
|
146 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
147 |
+
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
148 |
+
elif distribution == "normal":
|
149 |
+
with torch.no_grad():
|
150 |
+
tensor.normal_(std=math.sqrt(variance))
|
151 |
+
elif distribution == "uniform":
|
152 |
+
bound = math.sqrt(3 * variance)
|
153 |
+
with torch.no_grad():
|
154 |
+
tensor.uniform_(-bound, bound)
|
155 |
+
else:
|
156 |
+
raise ValueError(f"invalid distribution {distribution}")
|
157 |
|
158 |
|
159 |
+
def lecun_normal_(tensor):
|
160 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
|
|
|
|
161 |
|
162 |
|
163 |
+
def default_flax_embed_init(tensor):
|
164 |
+
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
|
|
|
|
|
|
165 |
|
166 |
|
167 |
@dataclass
|
|
|
240 |
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
241 |
The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
|
242 |
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
243 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
|
|
244 |
text_model_output(`BaseModelOutputWithPooling`):
|
245 |
The output of the [`SiglipTextModel`].
|
246 |
vision_model_output(`BaseModelOutputWithPooling`):
|
|
|
325 |
return embeddings
|
326 |
|
327 |
|
|
|
328 |
class SiglipAttention(nn.Module):
|
329 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
330 |
|
331 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
332 |
def __init__(self, config):
|
333 |
super().__init__()
|
334 |
self.config = config
|
|
|
348 |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
349 |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
350 |
|
|
|
|
|
|
|
351 |
def forward(
|
352 |
self,
|
353 |
hidden_states: torch.Tensor,
|
354 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
355 |
output_attentions: Optional[bool] = False,
|
356 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
357 |
"""Input shape: Batch x Time x Channel"""
|
358 |
|
359 |
+
batch_size, q_len, _ = hidden_states.size()
|
360 |
|
361 |
+
query_states = self.q_proj(hidden_states)
|
362 |
+
key_states = self.k_proj(hidden_states)
|
363 |
+
value_states = self.v_proj(hidden_states)
|
|
|
364 |
|
365 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
366 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
367 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
368 |
|
369 |
+
k_v_seq_len = key_states.shape[-2]
|
370 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
371 |
|
372 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
373 |
raise ValueError(
|
374 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
375 |
f" {attn_weights.size()}"
|
376 |
)
|
377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
if attention_mask is not None:
|
379 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
380 |
raise ValueError(
|
381 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
382 |
)
|
383 |
+
attn_weights = attn_weights + attention_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
+
# upcast attention to fp32
|
386 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
387 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
388 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
389 |
|
390 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
|
|
|
|
391 |
raise ValueError(
|
392 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
393 |
f" {attn_output.size()}"
|
394 |
)
|
395 |
|
396 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
397 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
|
|
398 |
|
399 |
attn_output = self.out_proj(attn_output)
|
400 |
|
401 |
+
return attn_output, attn_weights
|
402 |
|
403 |
|
404 |
class SiglipFlashAttention2(SiglipAttention):
|
|
|
623 |
self,
|
624 |
hidden_states: torch.Tensor,
|
625 |
attention_mask: torch.Tensor,
|
|
|
626 |
output_attentions: Optional[bool] = False,
|
627 |
) -> Tuple[torch.FloatTensor]:
|
628 |
"""
|
629 |
Args:
|
630 |
+
hidden_states (`torch.FloatTensor`):
|
631 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
632 |
+
attention_mask (`torch.FloatTensor`):
|
633 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
634 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
635 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
636 |
returned tensors for more detail.
|
637 |
"""
|
|
|
641 |
hidden_states, attn_weights = self.self_attn(
|
642 |
hidden_states=hidden_states,
|
643 |
attention_mask=attention_mask,
|
|
|
644 |
output_attentions=output_attentions,
|
645 |
)
|
646 |
hidden_states = residual + hidden_states
|
|
|
670 |
|
671 |
def _init_weights(self, module):
|
672 |
"""Initialize the weights"""
|
673 |
+
if isinstance(module, SiglipVisionEmbeddings):
|
674 |
+
width = (
|
675 |
+
self.config.vision_config.hidden_size
|
676 |
+
if isinstance(self.config, SiglipConfig)
|
677 |
+
else self.config.hidden_size
|
678 |
+
)
|
679 |
+
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
|
680 |
+
elif isinstance(module, nn.Embedding):
|
681 |
+
default_flax_embed_init(module.weight)
|
682 |
elif isinstance(module, SiglipAttention):
|
683 |
+
nn.init.xavier_uniform_(module.q_proj.weight)
|
684 |
+
nn.init.xavier_uniform_(module.k_proj.weight)
|
685 |
+
nn.init.xavier_uniform_(module.v_proj.weight)
|
686 |
+
nn.init.xavier_uniform_(module.out_proj.weight)
|
687 |
+
nn.init.zeros_(module.q_proj.bias)
|
688 |
+
nn.init.zeros_(module.k_proj.bias)
|
689 |
+
nn.init.zeros_(module.v_proj.bias)
|
690 |
+
nn.init.zeros_(module.out_proj.bias)
|
691 |
elif isinstance(module, SiglipMLP):
|
692 |
+
nn.init.xavier_uniform_(module.fc1.weight)
|
693 |
+
nn.init.xavier_uniform_(module.fc2.weight)
|
694 |
+
nn.init.normal_(module.fc1.bias, std=1e-6)
|
695 |
+
nn.init.normal_(module.fc2.bias, std=1e-6)
|
696 |
+
elif isinstance(module, SiglipMultiheadAttentionPoolingHead):
|
697 |
+
nn.init.xavier_uniform_(module.probe.data)
|
698 |
+
nn.init.xavier_uniform_(module.attention.in_proj_weight.data)
|
699 |
+
nn.init.zeros_(module.attention.in_proj_bias.data)
|
700 |
+
elif isinstance(module, SiglipModel):
|
701 |
+
logit_scale_init = torch.log(torch.tensor(1.0))
|
702 |
+
module.logit_scale.data.fill_(logit_scale_init)
|
703 |
+
module.logit_bias.data.zero_()
|
704 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
705 |
+
lecun_normal_(module.weight)
|
706 |
+
if module.bias is not None:
|
707 |
+
nn.init.zeros_(module.bias)
|
708 |
+
elif isinstance(module, nn.LayerNorm):
|
709 |
module.bias.data.zero_()
|
710 |
module.weight.data.fill_(1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
711 |
|
712 |
|
713 |
SIGLIP_START_DOCSTRING = r"""
|
|
|
826 |
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
827 |
self.gradient_checkpointing = False
|
828 |
|
829 |
+
# Ignore copy
|
830 |
def forward(
|
831 |
self,
|
832 |
inputs_embeds,
|
833 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
834 |
output_attentions: Optional[bool] = None,
|
835 |
output_hidden_states: Optional[bool] = None,
|
836 |
return_dict: Optional[bool] = None,
|
|
|
847 |
- 1 for tokens that are **not masked**,
|
848 |
- 0 for tokens that are **masked**.
|
849 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
850 |
[What are attention masks?](../glossary#attention-mask)
|
851 |
output_attentions (`bool`, *optional*):
|
852 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
|
867 |
all_attentions = () if output_attentions else None
|
868 |
|
869 |
hidden_states = inputs_embeds
|
870 |
+
for encoder_layer in self.layers:
|
871 |
if output_hidden_states:
|
872 |
encoder_states = encoder_states + (hidden_states,)
|
873 |
if self.gradient_checkpointing and self.training:
|
874 |
+
layer_outputs = self._gradient_checkpointing_func(
|
875 |
+
encoder_layer.__call__,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
876 |
hidden_states,
|
877 |
attention_mask,
|
878 |
+
output_attentions,
|
879 |
)
|
880 |
else:
|
881 |
layer_outputs = encoder_layer(
|
882 |
hidden_states,
|
883 |
attention_mask,
|
|
|
884 |
output_attentions=output_attentions,
|
885 |
)
|
886 |
|
|
|
939 |
|
940 |
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
941 |
|
942 |
+
# note: SigLIP's text model does not use a causal mask, unlike the original CLIP model.
|
943 |
# expand attention_mask
|
944 |
if attention_mask is not None:
|
945 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
946 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
947 |
|
948 |
encoder_outputs = self.encoder(
|
949 |
inputs_embeds=hidden_states,
|
950 |
+
attention_mask=attention_mask,
|
|
|
951 |
output_attentions=output_attentions,
|
952 |
output_hidden_states=output_hidden_states,
|
953 |
return_dict=return_dict,
|
|
|
1014 |
>>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
|
1015 |
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
1016 |
|
1017 |
+
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
1018 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
1019 |
|
1020 |
>>> outputs = model(**inputs)
|
1021 |
>>> last_hidden_state = outputs.last_hidden_state
|
|
|
1160 |
|
1161 |
>>> outputs = model(**inputs)
|
1162 |
>>> last_hidden_state = outputs.last_hidden_state
|
1163 |
+
>>> pooled_output = outputs.pooler_output # pooled features
|
1164 |
```"""
|
1165 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1166 |
|
|
|
1194 |
text_config = config.text_config
|
1195 |
vision_config = config.vision_config
|
1196 |
|
1197 |
+
self.text_model = SiglipTextTransformer(text_config)
|
1198 |
+
self.vision_model = SiglipVisionTransformer(vision_config)
|
1199 |
|
1200 |
+
self.logit_scale = nn.Parameter(torch.randn(1))
|
1201 |
+
self.logit_bias = nn.Parameter(torch.randn(1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1202 |
|
1203 |
# Initialize weights and apply final processing
|
1204 |
self.post_init()
|
|
|
1221 |
Examples:
|
1222 |
|
1223 |
```python
|
1224 |
+
>>> from transformers import AutoTokenizer, AutoModel
|
1225 |
+
>>> import torch
|
1226 |
|
1227 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
1228 |
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
1229 |
|
1230 |
+
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
1231 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
1232 |
+
>>> with torch.no_grad():
|
1233 |
+
... text_features = model.get_text_features(**inputs)
|
1234 |
```"""
|
1235 |
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1236 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
1270 |
```python
|
1271 |
>>> from PIL import Image
|
1272 |
>>> import requests
|
1273 |
+
>>> from transformers import AutoProcessor, AutoModel
|
1274 |
+
>>> import torch
|
1275 |
|
1276 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
1277 |
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1278 |
|
1279 |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
|
1281 |
|
1282 |
>>> inputs = processor(images=image, return_tensors="pt")
|
1283 |
|
1284 |
+
>>> with torch.no_grad():
|
1285 |
+
... image_features = model.get_image_features(**inputs)
|
1286 |
```"""
|
1287 |
# Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
|
1288 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
1323 |
```python
|
1324 |
>>> from PIL import Image
|
1325 |
>>> import requests
|
1326 |
+
>>> from transformers import AutoProcessor, AutoModel
|
1327 |
+
>>> import torch
|
1328 |
|
1329 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
1330 |
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1331 |
|
1332 |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1333 |
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1334 |
|
1335 |
+
>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"]
|
1336 |
+
>>> # important: we pass `padding=max_length` since the model was trained with this
|
1337 |
+
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
|
1338 |
|
1339 |
+
>>> with torch.no_grad():
|
1340 |
+
... outputs = model(**inputs)
|
1341 |
+
|
1342 |
+
>>> logits_per_image = outputs.logits_per_image
|
1343 |
+
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
|
1344 |
+
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
|
1345 |
+
31.9% that image 0 is 'a photo of 2 cats'
|
1346 |
```"""
|
1347 |
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1348 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
1375 |
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1376 |
|
1377 |
# cosine similarity as logits
|
1378 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.logit_scale.exp() + self.logit_bias
|
1379 |
logits_per_image = logits_per_text.t()
|
1380 |
|
|
|
|
|
1381 |
loss = None
|
1382 |
if return_loss:
|
1383 |
raise NotImplementedError("SigLIP loss to be implemented")
|