VLM_WebSight_finetuned / image_processing_img2html.py
VictorSanh's picture
git add image processing
9da4b20
raw
history blame
7.81 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Img2HTML."""
from typing import Callable, Dict, List, Optional, Union
from PIL import Image
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_transforms import resize, to_channel_dimension_format
from transformers.image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from transformers.utils import TensorType, is_torch_available
IMG2HTML_STANDARD_MEAN = [0.5, 0.5, 0.5]
IMG2HTML_STANDARD_STD = [0.5, 0.5, 0.5]
def convert_to_rgb(image):
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
# for transparent images. The call to `alpha_composite` handles this case
if image.mode == "RGB":
return image
image_rgba = image.convert("RGBA")
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, image_rgba)
alpha_composite = alpha_composite.convert("RGB")
return alpha_composite
class Img2HTMLImageProcessor(BaseImageProcessor):
r"""
Constructs a Img2HTML image processor.
Args:
image_size (`int`, *optional*, defaults to 224):
Resize to image size
image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
image_num_channels (`int`, *optional*, defaults to 3):
Number of image channels.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
image_size: int = 224,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
image_num_channels: Optional[int] = 3,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.image_size = image_size
self.image_num_channels = image_num_channels
self.image_mean = image_mean
self.image_std = image_std
def preprocess(
self,
images: ImageInput,
image_num_channels: Optional[int] = 3,
image_size: Optional[Dict[str, int]] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
transform: Callable = None,
**kwargs,
) -> TensorType.PYTORCH:
"""
Preprocess a batch of images.
Args:
images (`ImageInput`):
A list of images to preprocess.
image_size (`int`, *optional*, defaults to `self.image_size`):
Resize to image size
image_num_channels (`int`, *optional*, defaults to `self.image_num_channels`):
Number of image channels.
image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can
be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess`
method. Can be overridden by the `image_std` parameter in the `preprocess` method.
transform (`Callable`, *optional*, defaults to `None`):
A custom transform function that accepts a single image can be passed for training. For example,
`torchvision.Compose` can be used to compose multiple transforms. If `None` - an inference mode is
assumed - and then a preset of inference-specific transforms will be applied to the images
Returns:
a PyTorch tensor of the processed images
"""
image_size = image_size if image_size is not None else self.image_size
image_num_channels = image_num_channels if image_num_channels is not None else self.image_num_channels
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = (image_size, image_size)
if isinstance(images, list) and len(images) == 0:
return []
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
# For training a user needs to pass their own set of transforms as a Callable.
# For reference this is what was used in the original IDEFICS training:
# transform = transforms.Compose([
# convert_to_rgb,
# transforms.RandomResizedCrop((size, size), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BILINEAR),
# transforms.ToTensor(),
# transforms.Normalize(mean=image_mean, std=image_std),
# ])
if transform is not None:
if not is_torch_available():
raise ImportError("To pass in `transform` torch must be installed")
import torch
images = [transform(x) for x in images]
return torch.stack(images)
# for inference we do the exact transforms that were used to train IDEFICS
images = [convert_to_rgb(x) for x in images]
# further transforms expect numpy arrays
images = [to_numpy_array(x) for x in images]
images = [resize(x, size, resample=PILImageResampling.BILINEAR) for x in images]
images = [self.rescale(image=image, scale=1 / 255) for image in images]
images = [self.normalize(x, mean=image_mean, std=image_std) for x in images]
images = [to_channel_dimension_format(x, ChannelDimension.FIRST) for x in images]
# TODO: this converts to torch tensors - switch to convert_to_tensors once it becomes available
images = BatchFeature(data={"pixel_values": images}, tensor_type=TensorType.PYTORCH)["pixel_values"]
return images