metadata
tags:
- generated_from_trainer
model-index:
- name: icdar23-entrydetector_plaintext_breaks_indents_left_diff
results: []
icdar23-entrydetector_plaintext_breaks_indents_left_diff
This model is a fine-tuned version of HueyNemud/das22-10-camembert_pretrained on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0058
- Ebegin: {'precision': 0.9973404255319149, 'recall': 0.9872132380594209, 'f1': 0.9922509922509923, 'number': 2659}
- Eend: {'precision': 0.9950924877312193, 'recall': 0.9850523168908819, 'f1': 0.9900469483568075, 'number': 2676}
- Overall Precision: 0.9962
- Overall Recall: 0.9861
- Overall F1: 0.9911
- Overall Accuracy: 0.9985
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 7500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.07 | 300 | 0.0372 | 0.9749 | 0.9785 | 0.9767 | 0.9961 |
0.186 | 0.14 | 600 | 0.0149 | 0.9920 | 0.9876 | 0.9898 | 0.9981 |
0.186 | 0.21 | 900 | 0.0093 | 0.9901 | 0.9896 | 0.9898 | 0.9982 |
0.0196 | 0.29 | 1200 | 0.0109 | 0.9830 | 0.9937 | 0.9883 | 0.9979 |
0.0101 | 0.36 | 1500 | 0.0091 | 0.9877 | 0.9926 | 0.9901 | 0.9982 |
0.0101 | 0.43 | 1800 | 0.0095 | 0.9953 | 0.9820 | 0.9886 | 0.9980 |
0.0108 | 0.5 | 2100 | 0.0055 | 0.9947 | 0.9922 | 0.9935 | 0.9988 |
0.0108 | 0.57 | 2400 | 0.0052 | 0.9932 | 0.9928 | 0.9930 | 0.9988 |
0.008 | 0.64 | 2700 | 0.0054 | 0.9906 | 0.9900 | 0.9903 | 0.9983 |
0.0064 | 0.72 | 3000 | 0.0066 | 0.9953 | 0.9911 | 0.9932 | 0.9988 |
0.0064 | 0.79 | 3300 | 0.0093 | 0.9903 | 0.9838 | 0.9870 | 0.9977 |
0.0095 | 0.86 | 3600 | 0.0092 | 0.9899 | 0.9863 | 0.9881 | 0.9978 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2