bert-finetuned-ner / README.md
Hudayday's picture
update model card README.md
4612c33
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9395695364238411
- name: Recall
type: recall
value: 0.9550656344665096
- name: F1
type: f1
value: 0.9472542146553163
- name: Accuracy
type: accuracy
value: 0.9877847765938659
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0810
- Precision: 0.9396
- Recall: 0.9551
- F1: 0.9473
- Accuracy: 0.9878
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0221 | 1.0 | 1756 | 0.1039 | 0.9007 | 0.9278 | 0.9140 | 0.9797 |
| 0.0132 | 2.0 | 3512 | 0.0808 | 0.9286 | 0.9472 | 0.9378 | 0.9854 |
| 0.0092 | 3.0 | 5268 | 0.0827 | 0.9301 | 0.9488 | 0.9394 | 0.9857 |
| 0.006 | 4.0 | 7024 | 0.0781 | 0.9392 | 0.9542 | 0.9467 | 0.9878 |
| 0.0022 | 5.0 | 8780 | 0.0810 | 0.9396 | 0.9551 | 0.9473 | 0.9878 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2