metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9429032258064516
- task:
type: text-classification
name: Text Classification
dataset:
name: clinc_oos
type: clinc_oos
config: small
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.8789090909090909
verified: true
- name: Precision Macro
type: precision
value: 0.8785240074787364
verified: true
- name: Precision Micro
type: precision
value: 0.8789090909090909
verified: true
- name: Precision Weighted
type: precision
value: 0.8948919994021324
verified: true
- name: Recall Macro
type: recall
value: 0.9437704194260488
verified: true
- name: Recall Micro
type: recall
value: 0.8789090909090909
verified: true
- name: Recall Weighted
type: recall
value: 0.8789090909090909
verified: true
- name: F1 Macro
type: f1
value: 0.9061716559401573
verified: true
- name: F1 Micro
type: f1
value: 0.878909090909091
verified: true
- name: F1 Weighted
type: f1
value: 0.8738957323568334
verified: true
- name: loss
type: loss
value: 0.6343730092048645
verified: true
distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.3209
- Accuracy: 0.9429
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.0228 | 1.0 | 318 | 2.2545 | 0.7548 |
1.7605 | 2.0 | 636 | 1.2040 | 0.8513 |
0.959 | 3.0 | 954 | 0.6910 | 0.9123 |
0.5707 | 4.0 | 1272 | 0.4821 | 0.9294 |
0.3877 | 5.0 | 1590 | 0.3890 | 0.9394 |
0.3025 | 6.0 | 1908 | 0.3476 | 0.9410 |
0.258 | 7.0 | 2226 | 0.3264 | 0.9432 |
0.2384 | 8.0 | 2544 | 0.3209 | 0.9429 |
Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0
- Datasets 2.2.2
- Tokenizers 0.10.3