|
--- |
|
base_model: mistralai/Mistral-Nemo-Instruct-2407 |
|
library_name: peft |
|
license: other |
|
tags: |
|
- llama-factory |
|
- lora |
|
- generated_from_trainer |
|
model-index: |
|
- name: heat_transfer_sft_10000_mcq_a_1epoch |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# heat_transfer_sft_10000_mcq_a_1epoch |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) on the heat_transfer_10000_mcq_a dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0434 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- total_train_batch_size: 20 |
|
- total_eval_batch_size: 20 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.0654 | 0.0667 | 30 | 0.0632 | |
|
| 0.0595 | 0.1333 | 60 | 0.0577 | |
|
| 0.0546 | 0.2 | 90 | 0.0534 | |
|
| 0.0555 | 0.2667 | 120 | 0.0530 | |
|
| 0.052 | 0.3333 | 150 | 0.0524 | |
|
| 0.0529 | 0.4 | 180 | 0.0509 | |
|
| 0.0502 | 0.4667 | 210 | 0.0506 | |
|
| 0.0479 | 0.5333 | 240 | 0.0487 | |
|
| 0.0479 | 0.6 | 270 | 0.0483 | |
|
| 0.047 | 0.6667 | 300 | 0.0463 | |
|
| 0.0452 | 0.7333 | 330 | 0.0455 | |
|
| 0.0437 | 0.8 | 360 | 0.0444 | |
|
| 0.0442 | 0.8667 | 390 | 0.0439 | |
|
| 0.0439 | 0.9333 | 420 | 0.0434 | |
|
| 0.0444 | 1.0 | 450 | 0.0434 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.46.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.20.1 |