Howard881010's picture
Upload folder using huggingface_hub
45c97e0 verified
---
base_model: mistralai/Mistral-Nemo-Instruct-2407
library_name: peft
license: other
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: heat_transfer_sft_10000_mcq_a_1epoch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# heat_transfer_sft_10000_mcq_a_1epoch
This model is a fine-tuned version of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) on the heat_transfer_10000_mcq_a dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0434
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 20
- total_eval_batch_size: 20
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0654 | 0.0667 | 30 | 0.0632 |
| 0.0595 | 0.1333 | 60 | 0.0577 |
| 0.0546 | 0.2 | 90 | 0.0534 |
| 0.0555 | 0.2667 | 120 | 0.0530 |
| 0.052 | 0.3333 | 150 | 0.0524 |
| 0.0529 | 0.4 | 180 | 0.0509 |
| 0.0502 | 0.4667 | 210 | 0.0506 |
| 0.0479 | 0.5333 | 240 | 0.0487 |
| 0.0479 | 0.6 | 270 | 0.0483 |
| 0.047 | 0.6667 | 300 | 0.0463 |
| 0.0452 | 0.7333 | 330 | 0.0455 |
| 0.0437 | 0.8 | 360 | 0.0444 |
| 0.0442 | 0.8667 | 390 | 0.0439 |
| 0.0439 | 0.9333 | 420 | 0.0434 |
| 0.0444 | 1.0 | 450 | 0.0434 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.46.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1