Commit
·
0418967
1
Parent(s):
d1a2878
Model save
Browse files- README.md +39 -39
- pytorch_model.bin +1 -1
README.md
CHANGED
|
@@ -24,13 +24,13 @@ model-index:
|
|
| 24 |
metrics:
|
| 25 |
- name: Accuracy
|
| 26 |
type: accuracy
|
| 27 |
-
value: 0.
|
| 28 |
- name: Precision
|
| 29 |
type: precision
|
| 30 |
-
value: 0.
|
| 31 |
- name: Recall
|
| 32 |
type: recall
|
| 33 |
-
value: 0.
|
| 34 |
---
|
| 35 |
|
| 36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 40 |
|
| 41 |
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
| 42 |
It achieves the following results on the evaluation set:
|
| 43 |
-
- Loss: 0.
|
| 44 |
-
- Accuracy: 0.
|
| 45 |
-
- Precision: 0.
|
| 46 |
-
- Recall: 0.
|
| 47 |
-
- F1 Score: 0.
|
| 48 |
|
| 49 |
## Model description
|
| 50 |
|
|
@@ -78,41 +78,41 @@ The following hyperparameters were used during training:
|
|
| 78 |
|
| 79 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
| 80 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
|
| 81 |
-
| No log | 1.0 | 4 | 0.
|
| 82 |
-
| No log | 2.0 | 8 | 0.
|
| 83 |
-
| No log | 3.0 | 12 | 0.
|
| 84 |
-
| No log | 4.0 | 16 | 0.
|
| 85 |
-
| No log | 5.0 | 20 | 0.
|
| 86 |
-
| No log | 6.0 | 24 | 0.
|
| 87 |
-
| No log | 7.0 | 28 | 0.
|
| 88 |
-
| 0.
|
| 89 |
-
| 0.
|
| 90 |
-
| 0.
|
| 91 |
-
| 0.
|
| 92 |
-
| 0.
|
| 93 |
-
| 0.
|
| 94 |
-
| 0.
|
| 95 |
-
| 0.
|
| 96 |
-
| 0.
|
| 97 |
-
| 0.
|
| 98 |
-
| 0.
|
| 99 |
-
| 0.
|
| 100 |
-
| 0.
|
| 101 |
-
| 0.
|
| 102 |
-
| 0.
|
| 103 |
-
| 0.
|
| 104 |
-
| 0.
|
| 105 |
-
| 0.
|
| 106 |
-
| 0.
|
| 107 |
-
| 0.
|
| 108 |
-
| 0.
|
| 109 |
-
| 0.
|
| 110 |
-
| 0.
|
| 111 |
|
| 112 |
|
| 113 |
### Framework versions
|
| 114 |
|
| 115 |
-
- Transformers 4.33.
|
| 116 |
- Pytorch 2.0.1+cu118
|
| 117 |
- Datasets 2.14.5
|
| 118 |
- Tokenizers 0.13.3
|
|
|
|
| 24 |
metrics:
|
| 25 |
- name: Accuracy
|
| 26 |
type: accuracy
|
| 27 |
+
value: 0.8566666666666667
|
| 28 |
- name: Precision
|
| 29 |
type: precision
|
| 30 |
+
value: 0.8522571872571872
|
| 31 |
- name: Recall
|
| 32 |
type: recall
|
| 33 |
+
value: 0.8566666666666667
|
| 34 |
---
|
| 35 |
|
| 36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 40 |
|
| 41 |
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
| 42 |
It achieves the following results on the evaluation set:
|
| 43 |
+
- Loss: 0.4410
|
| 44 |
+
- Accuracy: 0.8567
|
| 45 |
+
- Precision: 0.8523
|
| 46 |
+
- Recall: 0.8567
|
| 47 |
+
- F1 Score: 0.8517
|
| 48 |
|
| 49 |
## Model description
|
| 50 |
|
|
|
|
| 78 |
|
| 79 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
| 80 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
|
| 81 |
+
| No log | 1.0 | 4 | 0.5841 | 0.7333 | 0.6770 | 0.7333 | 0.6479 |
|
| 82 |
+
| No log | 2.0 | 8 | 0.5727 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
|
| 83 |
+
| No log | 3.0 | 12 | 0.6089 | 0.7208 | 0.7222 | 0.7208 | 0.7215 |
|
| 84 |
+
| No log | 4.0 | 16 | 0.5332 | 0.7458 | 0.7205 | 0.7458 | 0.6727 |
|
| 85 |
+
| No log | 5.0 | 20 | 0.5314 | 0.7625 | 0.7410 | 0.7625 | 0.7416 |
|
| 86 |
+
| No log | 6.0 | 24 | 0.5284 | 0.7583 | 0.7486 | 0.7583 | 0.6959 |
|
| 87 |
+
| No log | 7.0 | 28 | 0.5220 | 0.775 | 0.7700 | 0.775 | 0.7286 |
|
| 88 |
+
| 0.5564 | 8.0 | 32 | 0.5204 | 0.7833 | 0.7740 | 0.7833 | 0.7481 |
|
| 89 |
+
| 0.5564 | 9.0 | 36 | 0.5044 | 0.7708 | 0.7616 | 0.7708 | 0.7650 |
|
| 90 |
+
| 0.5564 | 10.0 | 40 | 0.4845 | 0.8125 | 0.8051 | 0.8125 | 0.7941 |
|
| 91 |
+
| 0.5564 | 11.0 | 44 | 0.4921 | 0.7833 | 0.7726 | 0.7833 | 0.7757 |
|
| 92 |
+
| 0.5564 | 12.0 | 48 | 0.4792 | 0.8167 | 0.8098 | 0.8167 | 0.7996 |
|
| 93 |
+
| 0.5564 | 13.0 | 52 | 0.4825 | 0.8 | 0.7889 | 0.8 | 0.7901 |
|
| 94 |
+
| 0.5564 | 14.0 | 56 | 0.4987 | 0.8083 | 0.7989 | 0.8083 | 0.8002 |
|
| 95 |
+
| 0.3176 | 15.0 | 60 | 0.4970 | 0.8208 | 0.8144 | 0.8208 | 0.8050 |
|
| 96 |
+
| 0.3176 | 16.0 | 64 | 0.5076 | 0.8083 | 0.7983 | 0.8083 | 0.7923 |
|
| 97 |
+
| 0.3176 | 17.0 | 68 | 0.5227 | 0.8083 | 0.7979 | 0.8083 | 0.7941 |
|
| 98 |
+
| 0.3176 | 18.0 | 72 | 0.5132 | 0.8042 | 0.7928 | 0.8042 | 0.7905 |
|
| 99 |
+
| 0.3176 | 19.0 | 76 | 0.5081 | 0.8167 | 0.8087 | 0.8167 | 0.8014 |
|
| 100 |
+
| 0.3176 | 20.0 | 80 | 0.5140 | 0.8292 | 0.8220 | 0.8292 | 0.8187 |
|
| 101 |
+
| 0.3176 | 21.0 | 84 | 0.5392 | 0.8125 | 0.8032 | 0.8125 | 0.7977 |
|
| 102 |
+
| 0.3176 | 22.0 | 88 | 0.5175 | 0.7958 | 0.7829 | 0.7958 | 0.7815 |
|
| 103 |
+
| 0.1778 | 23.0 | 92 | 0.5109 | 0.8125 | 0.8032 | 0.8125 | 0.7977 |
|
| 104 |
+
| 0.1778 | 24.0 | 96 | 0.4961 | 0.8292 | 0.8217 | 0.8292 | 0.8213 |
|
| 105 |
+
| 0.1778 | 25.0 | 100 | 0.5251 | 0.8083 | 0.7979 | 0.8083 | 0.7941 |
|
| 106 |
+
| 0.1778 | 26.0 | 104 | 0.5192 | 0.8167 | 0.8075 | 0.8167 | 0.8046 |
|
| 107 |
+
| 0.1778 | 27.0 | 108 | 0.5030 | 0.8333 | 0.8274 | 0.8333 | 0.8286 |
|
| 108 |
+
| 0.1778 | 28.0 | 112 | 0.5031 | 0.8375 | 0.8310 | 0.8375 | 0.8300 |
|
| 109 |
+
| 0.1778 | 29.0 | 116 | 0.5164 | 0.8208 | 0.8127 | 0.8208 | 0.8083 |
|
| 110 |
+
| 0.1109 | 30.0 | 120 | 0.5192 | 0.8208 | 0.8127 | 0.8208 | 0.8083 |
|
| 111 |
|
| 112 |
|
| 113 |
### Framework versions
|
| 114 |
|
| 115 |
+
- Transformers 4.33.3
|
| 116 |
- Pytorch 2.0.1+cu118
|
| 117 |
- Datasets 2.14.5
|
| 118 |
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 343268717
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad3d16a6ef5aeb9c7cb122a48f1345bfc4f718ab28f30e93f0dff75334389461
|
| 3 |
size 343268717
|