m3hrdadfi commited on
Commit
cbe5f09
1 Parent(s): 9f80836

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: fa
3
+ license: apache-2.0
4
+ ---
5
+
6
+ # ParsBERT (v2.0)
7
+ A Transformer-based Model for Persian Language Understanding
8
+
9
+ We reconstructed the vocabulary and fine-tuned the ParsBERT v1.1 on the new Persian corpora in order to provide some functionalities for using ParsBERT in other scopes!
10
+ Please follow the [ParsBERT](https://github.com/hooshvare/parsbert) repo for the latest information about previous and current models.
11
+
12
+
13
+ ## Persian Sentiment [Digikala, SnappFood, DeepSentiPers]
14
+
15
+ It aims to classify text, such as comments, based on their emotional bias. We tested three well-known datasets for this task: `Digikala` user comments, `SnappFood` user comments, and `DeepSentiPers` in two binary-form and multi-form types.
16
+
17
+
18
+ ### DeepSentiPers
19
+
20
+ which is a balanced and augmented version of SentiPers, contains 12,138 user opinions about digital products labeled with five different classes; two positives (i.e., happy and delighted), two negatives (i.e., furious and angry) and one neutral class. Therefore, this dataset can be utilized for both multi-class and binary classification. In the case of binary classification, the neutral class and its corresponding sentences are removed from the dataset.
21
+
22
+ **Binary:**
23
+ 1. Negative (Furious + Angry)
24
+ 2. Positive (Happy + Delighted)
25
+
26
+ **Multi**
27
+ 1. Furious
28
+ 2. Angry
29
+ 3. Neutral
30
+ 4. Happy
31
+ 5. Delighted
32
+
33
+
34
+ | Label | # |
35
+ |:---------:|:----:|
36
+ | Furious | 236 |
37
+ | Angry | 1357 |
38
+ | Neutral | 2874 |
39
+ | Happy | 2848 |
40
+ | Delighted | 2516 |
41
+
42
+
43
+
44
+ **Download**
45
+ You can download the dataset from:
46
+
47
+ - [SentiPers](https://github.com/phosseini/sentipers)
48
+ - [DeepSentiPers](https://github.com/JoyeBright/DeepSentiPers)
49
+
50
+ ## Results
51
+
52
+ The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures.
53
+
54
+ | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | DeepSentiPers |
55
+ |:------------------------:|:-----------:|:-----------:|:-----:|:-------------:|
56
+ | SentiPers (Multi Class) | 71.31* | 71.11 | - | 69.33 |
57
+ | SentiPers (Binary Class) | 92.42* | 92.13 | - | 91.98 |
58
+
59
+
60
+ ## How to use :hugs:
61
+
62
+ | Task | Notebook |
63
+ |---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
64
+ | Sentiment Analysis | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert/blob/master/notebooks/Taaghche_Sentiment_Analysis.ipynb) |
65
+
66
+
67
+ ### BibTeX entry and citation info
68
+
69
+ Please cite in publications as the following:
70
+
71
+ ```bibtex
72
+ @article{ParsBERT,
73
+ title={ParsBERT: Transformer-based Model for Persian Language Understanding},
74
+ author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri},
75
+ journal={ArXiv},
76
+ year={2020},
77
+ volume={abs/2005.12515}
78
+ }
79
+ ```
80
+
81
+ ## Questions?
82
+ Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.