metadata
license: gemma
library_name: peft
tags:
- trl
- reward-trainer
- generated_from_trainer
base_model: google/gemma-2b
metrics:
- accuracy
model-index:
- name: RM-HH-Gemma_helpful_human_20000_gemma2b_shuffleFalse_extractchosenTrue
results: []
RM-HH-Gemma_helpful_human_20000_gemma2b_shuffleFalse_extractchosenTrue
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6203
- Accuracy: 0.6600
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.733 | 0.06 | 250 | 0.7295 | 0.5123 |
0.7034 | 0.11 | 500 | 0.7061 | 0.5498 |
0.7165 | 0.17 | 750 | 0.6913 | 0.5729 |
0.6821 | 0.22 | 1000 | 0.6809 | 0.5884 |
0.6707 | 0.28 | 1250 | 0.6744 | 0.6024 |
0.6551 | 0.33 | 1500 | 0.6692 | 0.6114 |
0.6744 | 0.39 | 1750 | 0.6617 | 0.6144 |
0.6418 | 0.45 | 2000 | 0.6591 | 0.6335 |
0.6546 | 0.5 | 2250 | 0.6567 | 0.6355 |
0.6465 | 0.56 | 2500 | 0.6537 | 0.6375 |
0.6489 | 0.61 | 2750 | 0.6471 | 0.6390 |
0.6555 | 0.67 | 3000 | 0.6399 | 0.6390 |
0.647 | 0.72 | 3250 | 0.6374 | 0.6460 |
0.6555 | 0.78 | 3500 | 0.6365 | 0.6490 |
0.6165 | 0.83 | 3750 | 0.6347 | 0.6465 |
0.6385 | 0.89 | 4000 | 0.6338 | 0.6485 |
0.6202 | 0.95 | 4250 | 0.6317 | 0.6490 |
0.6198 | 1.0 | 4500 | 0.6316 | 0.6520 |
0.6092 | 1.06 | 4750 | 0.6325 | 0.6515 |
0.6091 | 1.11 | 5000 | 0.6339 | 0.6510 |
0.605 | 1.17 | 5250 | 0.6338 | 0.6540 |
0.673 | 1.22 | 5500 | 0.6263 | 0.6550 |
0.6119 | 1.28 | 5750 | 0.6267 | 0.6565 |
0.6153 | 1.34 | 6000 | 0.6267 | 0.6580 |
0.6048 | 1.39 | 6250 | 0.6249 | 0.6560 |
0.62 | 1.45 | 6500 | 0.6228 | 0.6540 |
0.6213 | 1.5 | 6750 | 0.6234 | 0.6595 |
0.6107 | 1.56 | 7000 | 0.6228 | 0.6605 |
0.6266 | 1.61 | 7250 | 0.6212 | 0.6580 |
0.6088 | 1.67 | 7500 | 0.6211 | 0.6595 |
0.6282 | 1.72 | 7750 | 0.6210 | 0.6615 |
0.6384 | 1.78 | 8000 | 0.6197 | 0.6610 |
0.5987 | 1.84 | 8250 | 0.6198 | 0.6580 |
0.5911 | 1.89 | 8500 | 0.6201 | 0.6600 |
0.5981 | 1.95 | 8750 | 0.6203 | 0.6600 |
Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2