finetuned-bert-mrpc / README.md
HoangVuSnape's picture
Upload config
0b82f73 verified
metadata
base_model: bert-base-cased
datasets:
  - glue
license: apache-2.0
metrics:
  - accuracy
  - f1
tags:
  - generated_from_trainer
model-index:
  - name: finetuned-bert-mrpc
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: glue
          type: glue
          args: mrpc
        metrics:
          - type: f1
            value: 0.8998
            name: F1

finetuned-bert-mrpc

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4436
  • Accuracy: 0.8554
  • F1: 0.8998

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5533 1.0 230 0.4256 0.8113 0.8702
0.3274 2.0 460 0.3869 0.8407 0.8873
0.1603 3.0 690 0.4436 0.8554 0.8998

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1