|
--- |
|
library_name: transformers |
|
tags: |
|
- unsloth |
|
license: apache-2.0 |
|
datasets: |
|
- llm-jp/magpie-sft-v1.0 |
|
language: |
|
- ja |
|
base_model: |
|
- google/gemma-2-9b |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
|
|
|
|
## Model Details |
|
|
|
### Model Description |
|
gemma-2-9b-nyan100 |
|
|
|
gemma-2-9b-nyan100 は、Google の Gemma-2-9b を基に、日本語の指示追従タスクに特化して微調整されたモデルです。本モデルは、特に日本語での指示応答や対話生成、文書要約などのタスクに優れた性能を発揮します。 |
|
|
|
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. |
|
|
|
- **Developed by:** [Hizaneko] |
|
- **Funded by [optional]:** [More Information Needed] |
|
- **Shared by [optional]:** [More Information Needed] |
|
- **Model type:** [指示追従型大規模言語モデル (Instruction-Following LLM)] |
|
- **Language(s) (NLP):** [日本語] |
|
- **License:** [Gemma 利用規約 に従う] |
|
- **Finetuned from model [optional]:** [google/gemma-2-9b] |
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** [More Information Needed] |
|
- **Paper [optional]:** [More Information Needed] |
|
- **Demo [optional]:** [More Information Needed] |
|
|
|
## Uses |
|
|
|
!pip uninstall unsloth -y |
|
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
|
|
# Google Colab のデフォルトで入っているパッケージをアップグレード(Moriyasu さんありがとうございます) |
|
!pip install --upgrade torch |
|
!pip install --upgrade xformers |
|
|
|
# notebookでインタラクティブな表示を可能とする(ただし、うまく動かない場合あり) |
|
# Google Colabでは実行不要 |
|
!pip install ipywidgets --upgrade |
|
|
|
# Install Flash Attention 2 for softcapping support |
|
import torch |
|
if torch.cuda.get_device_capability()[0] >= 8: |
|
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3" |
|
|
|
# Hugging Face Token を指定 |
|
#HF_TOKEN = "" #@param {type:"string"} |
|
|
|
# あるいはGoogle Colab シークレットを使う場合、左のサイドバーより🔑マークをクリック |
|
# HF_TOKEN という名前で Value に Hugging Face Token を入れてください。 |
|
# ノートブックからのアクセスのトグルをオンにし、下記の二行のコードのコメントアウトを外してください。 |
|
from google.colab import userdata |
|
HF_TOKEN=userdata.get('HF_TOKEN') |
|
|
|
# google/gemma-2-9bを4bit量子化のqLoRA設定でロード。 |
|
|
|
from unsloth import FastLanguageModel |
|
import torch |
|
#max_seq_length = 512 # unslothではRoPEをサポートしているのでコンテキスト長は自由に設定可能 |
|
max_seq_length = 1024 |
|
dtype = None # Noneにしておけば自動で設定 |
|
load_in_4bit = True # 今回は9Bモデルを扱うためTrue |
|
|
|
# HFからモデルリポジトリをダウンロード |
|
!huggingface-cli login --token $HF_TOKEN |
|
!huggingface-cli download google/gemma-2-9b --local-dir gemma-2-9b/ |
|
model_id = "./gemma-2-9b" |
|
new_model_id = "gemma-2-9b-nyan100" #Fine-Tuningしたモデルにつけたい名前 |
|
# FastLanguageModel インスタンスを作成 |
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=model_id, |
|
dtype=dtype, |
|
load_in_4bit=load_in_4bit, |
|
trust_remote_code=True, |
|
) |
|
|
|
# SFT用のモデルを用意 |
|
model = FastLanguageModel.get_peft_model( |
|
model, |
|
r = 32, |
|
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", |
|
"gate_proj", "up_proj", "down_proj",], |
|
lora_alpha = 32, |
|
lora_dropout = 0.05, |
|
#lora_dropout = 0.1, |
|
bias = "none", |
|
use_gradient_checkpointing = "unsloth", |
|
random_state = 3407, |
|
use_rslora = False, |
|
loftq_config = None, |
|
max_seq_length = max_seq_length, |
|
) |
|
|
|
from datasets import load_dataset |
|
|
|
# データセットのロード |
|
dataset_name = "llm-jp/magpie-sft-v1.0" |
|
dataset = load_dataset(dataset_name) |
|
|
|
# データセットの10分の1を使用(train split前提) |
|
train_length = len(dataset["train"]) |
|
#dataset["train"] = dataset["train"].select(range(train_length // 10)) |
|
dataset["train"] = dataset["train"].select(range(train_length // 100)) |
|
|
|
# フォーマット整形関数の定義 |
|
def format_dataset(examples): |
|
conversations = examples["conversations"] # conversationsカラムを取得 |
|
user_inputs = [] |
|
assistant_outputs = [] |
|
|
|
for turn in conversations: |
|
if turn["role"] == "user": |
|
user_inputs.append(turn["content"]) |
|
elif turn["role"] == "assistant": |
|
assistant_outputs.append(turn["content"]) |
|
|
|
input_text = " ".join(user_inputs) # ユーザー発話を結合 |
|
output_text = " ".join(assistant_outputs) # アシスタント発話を結合 |
|
|
|
return { |
|
"text": input_text, # 入力部分 |
|
"output": output_text # 出力部分 |
|
} |
|
|
|
# データセットを整形 |
|
formatted_dataset = dataset.map( |
|
format_dataset, |
|
num_proc=4, |
|
remove_columns=["conversations"] |
|
) |
|
|
|
# 結果の表示 |
|
print(formatted_dataset) |
|
|
|
# プロンプトフォーマットの定義 |
|
prompt = """### 指示 |
|
{} |
|
### 回答 |
|
{}""" |
|
|
|
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン |
|
|
|
# プロンプト生成関数 |
|
def formatting_prompts_func(examples): |
|
input_text = examples["text"] |
|
output_text = examples["output"] |
|
formatted_text = prompt.format(input_text, output_text) + EOS_TOKEN |
|
return {"formatted_text": formatted_text} |
|
|
|
# プロンプト適用 |
|
final_dataset = formatted_dataset.map( |
|
formatting_prompts_func, |
|
num_proc=4 |
|
) |
|
|
|
from trl import SFTTrainer |
|
from transformers import TrainingArguments |
|
from unsloth import is_bfloat16_supported |
|
|
|
trainer = SFTTrainer( |
|
model = model, |
|
tokenizer = tokenizer, |
|
train_dataset=final_dataset["train"], |
|
max_seq_length = max_seq_length, |
|
dataset_text_field="formatted_text", |
|
packing = False, |
|
args = TrainingArguments( |
|
per_device_train_batch_size = 2, |
|
gradient_accumulation_steps = 4, |
|
num_train_epochs = 1, |
|
logging_steps = 10, |
|
warmup_steps = 10, |
|
save_steps=100, |
|
save_total_limit=2, |
|
max_steps=-1, |
|
learning_rate = 2e-4, |
|
#learning_rate = 1e-4, |
|
fp16 = not is_bfloat16_supported(), |
|
bf16 = is_bfloat16_supported(), |
|
group_by_length=True, |
|
seed = 3407, |
|
output_dir = "outputs", |
|
report_to = "none", |
|
), |
|
) |
|
|
|
trainer_stats = trainer.train() |
|
|
|
# ELYZA-tasks-100-TVの読み込み。事前にファイルをアップロードしてください |
|
# データセットの読み込み。 |
|
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。 |
|
import json |
|
datasets = [] |
|
with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
# 学習したモデルを用いてタスクを実行 |
|
from tqdm import tqdm |
|
|
|
# 推論するためにモデルのモードを変更 |
|
FastLanguageModel.for_inference(model) |
|
|
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
|
|
#prompt = f"""### 指示\n{input}\n### 回答\n""" |
|
prompt = f"""### 指示\n{input} 簡潔に回答してください \n### 回答\n""" |
|
|
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
|
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
# jsonlで保存 |
|
with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
|
|
#モデルとトークナイザーをHugging Faceにアップロード。 |
|
# 一旦privateでアップロードしてください。 |
|
# 最終成果物が決まったらpublicにするようお願いします。 |
|
# 現在公開しているModel_Inference_Template.ipynbはunslothを想定していないためそのままでは動かない可能性があります。 |
|
model.push_to_hub_merged( |
|
new_model_id, |
|
tokenizer=tokenizer, |
|
save_method="lora", |
|
token=HF_TOKEN, |
|
private=True |
|
) |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
|
### Direct Use |
|
|
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
[More Information Needed] |
|
|
|
### Downstream Use [optional] |
|
|
|
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> |
|
|
|
[More Information Needed] |
|
|
|
### Out-of-Scope Use |
|
|
|
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> |
|
|
|
[More Information Needed] |
|
|
|
## Bias, Risks, and Limitations |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
[More Information Needed] |
|
|
|
### Recommendations |
|
|
|
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
[More Information Needed] |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
データセット: llm-jp/magpie-sft-v1.0 |
|
データ量: 約50,000件の日本語サンプルのうちランダムに抽出した5000件 |
|
|
|
|
|
[More Information Needed] |
|
|
|
### Training Procedure |
|
|
|
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> |
|
|
|
#### Preprocessing [optional] |
|
|
|
[More Information Needed] |
|
|
|
|
|
#### Training Hyperparameters |
|
LoRA 設定: |
|
r=32 |
|
lora_alpha=32 |
|
lora_dropout=0.05 |
|
バッチサイズ: デバイスごとに 2 |
|
勾配累積ステップ: 4 |
|
学習率: 2e-4 |
|
学習エポック数: 1 |
|
|
|
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> |
|
|
|
#### Speeds, Sizes, Times [optional] |
|
|
|
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> |
|
|
|
[More Information Needed] |
|
|
|
## Evaluation |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
|
|
### Testing Data, Factors & Metrics |
|
|
|
#### Testing Data |
|
|
|
<!-- This should link to a Dataset Card if possible. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Factors |
|
|
|
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Metrics |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
[More Information Needed] |
|
|
|
### Results |
|
|
|
[More Information Needed] |
|
|
|
#### Summary |
|
|
|
|
|
|
|
## Model Examination [optional] |
|
|
|
<!-- Relevant interpretability work for the model goes here --> |
|
|
|
[More Information Needed] |
|
|
|
## Environmental Impact |
|
|
|
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** [NVIDIA L4] |
|
- **Hours used:** [約1時間] |
|
- **Cloud Provider:** [More Information Needed] |
|
- **Compute Region:** [More Information Needed] |
|
- **Carbon Emitted:** [More Information Needed] |
|
|
|
## Technical Specifications [optional] |
|
|
|
### Model Architecture and Objective |
|
|
|
[More Information Needed] |
|
|
|
### Compute Infrastructure |
|
|
|
[More Information Needed] |
|
|
|
#### Hardware |
|
|
|
[More Information Needed] |
|
|
|
#### Software |
|
|
|
[More Information Needed] |
|
|
|
## Citation [optional] |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
[More Information Needed] |
|
|
|
**APA:** |
|
|
|
[More Information Needed] |
|
|
|
## Glossary [optional] |
|
|
|
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> |
|
|
|
[More Information Needed] |
|
|
|
## More Information [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Authors [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Contact |
|
|
|
[More Information Needed] |