Heralax commited on
Commit
54cafb2
1 Parent(s): f6e290f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -124
README.md CHANGED
@@ -9,130 +9,20 @@ model-index:
9
  results: []
10
  ---
11
 
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
 
15
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
- <details><summary>See axolotl config</summary>
17
 
18
- axolotl version: `0.4.1`
19
- ```yaml
20
- # This is an axolotl config that allowed creation of a model knowledgeable about hawaii.
21
- # Replace the dataset paths under `datasets:` with your own
22
- # If you want a reference point of what kind of data was fed into this model, check out hawaiitoolkit https://github.com/e-p-armstrong/hawaiitoolkit.git
23
 
24
- # Rent a GPU with a compute provider like Vast.ai or Runpod
25
- # (Make sure it is using the axolotl docker image --- winglian/axolotl:main-latest)
26
- # Copy this file over to the rented instance, in the /workspace/axolotl directory
27
- # If running on a single-GPU setup, you must run:
28
- # conda install -c conda-forge mpi4py mpich
29
- # Then run this command from the /workspace/axolotl directory:
30
- # accelerate launch --use_deepspeed -m axolotl.cli.train axolotl_config_hawaii_llama3_Jun_9_2024.yaml
31
 
32
- # If using GaLore, do not use deepspeed
33
-
34
- # (to copy files over to a rented GPU instance, you'll have to use SSH to Secure CoPy files over from your machine to the rented one. This is what such a command might look like, adapt it to your needs)
35
- # scp -P 40001 -r ./ root@173.231.62.170:/workspace/axolotl/
36
-
37
-
38
- # TODO to properly make this great, MAKE VARIED SYSTEM PROMPTS FOR ALL THINGS IN THE hawaii DATASET.
39
- # And make automated code to produce it so that I built it for this project and not the other one.
40
- # OK, now I am truly back to working on the efficiency problem.
41
-
42
- base_model: Heralax/philosophy-llm-mistral-pretrain
43
- tokenizer_type: AutoTokenizer
44
- is_mistral_derived_model: true
45
- load_in_8bit: false
46
- load_in_4bit: false
47
- strict: false
48
-
49
- datasets:
50
- - path: json
51
- data_files: philosophy_qa_normal.jsonl
52
- ds_type: json
53
- type: sharegpt
54
- conversation: chatml
55
- - path: json
56
- data_files: philosophy_qa_open-ended.jsonl
57
- ds_type: json
58
- type: sharegpt
59
- conversation: chatml
60
- - path: json
61
- data_files: philosophy_qa_negative.jsonl
62
- ds_type: json
63
- type: sharegpt
64
- conversation: chatml
65
-
66
- dataset_prepared_path: last_run_prepared
67
- output_dir: ./philosophy-hardcore-pretraining
68
-
69
- sequence_len: 4096
70
- sample_packing: false
71
- pad_to_sequence_len: true
72
- shuffle_merged_datasets: true
73
-
74
- wandb_project: mistral-philosophy
75
- wandb_entity:
76
- wandb_watch:
77
- wandb_run_id:
78
- wandb_log_model:
79
-
80
- gradient_accumulation_steps: 6
81
- micro_batch_size: 2
82
- eval_batch_size: 1
83
- num_epochs: 6
84
- optimizer: paged_adamw_8bit
85
- lr_scheduler: cosine
86
- learning_rate: 0.000020
87
- weight_decay: 0
88
- # Gradient clipping max norm
89
- max_grad_norm: 1.0
90
- noisy_embedding_alpha: 0
91
- train_on_inputs: false
92
- group_by_length: false
93
- bf16: true
94
- fp16: false
95
- tf32: false
96
-
97
- gradient_checkpointing: unsloth
98
- early_stopping_patience:
99
- resume_from_checkpoint:
100
- logging_steps: 1
101
- xformers_attention:
102
- flash_attention: true
103
-
104
- chat_template: chatml
105
-
106
- warmup_ratio: 0.5
107
- auto_resume_from_checkpoints: false
108
- #warmup_ratio: 0.5
109
- eval_steps: 10
110
- saves_per_epoch: 1
111
- eval_sample_packing: false
112
- save_total_limit: 3
113
- debug:
114
- deepspeed: deepspeed_configs/zero2.json
115
- special_tokens:
116
- pad_token: "<|end_of_text|>"
117
- ```
118
-
119
- </details><br>
120
-
121
- # philosophy-hardcore-pretraining
122
-
123
- This model is a fine-tuned version of [Heralax/philosophy-llm-mistral-pretrain](https://huggingface.co/Heralax/philosophy-llm-mistral-pretrain) on the None dataset.
124
-
125
- ## Model description
126
-
127
- More information needed
128
-
129
- ## Intended uses & limitations
130
-
131
- More information needed
132
-
133
- ## Training and evaluation data
134
-
135
- More information needed
136
 
137
  ## Training procedure
138
 
@@ -153,10 +43,6 @@ The following hyperparameters were used during training:
153
  - lr_scheduler_warmup_steps: 136
154
  - num_epochs: 6
155
 
156
- ### Training results
157
-
158
-
159
-
160
  ### Framework versions
161
 
162
  - Transformers 4.45.0.dev0
 
9
  results: []
10
  ---
11
 
12
+ # Philosophy LLM
 
13
 
14
+ I would've trained this on Phi so I could've called it Phi-losophy if I had thought of that joke before kicking off the run. Oh well.
15
+ It's trained on Mistral instead. That's a Mist opportunity right there.
16
 
17
+ This is a narrow domain-expert LLM trained on the top 5 books on Gutenberg:
 
 
 
 
18
 
19
+ - The Problems of Philosophy (Bertrand Russell)
20
+ - Beyond Good and Evil (Nietzsche)
21
+ - Thus Spake Zarathustra: A Book for All and None (Nietzsche)
22
+ - The Prince (Machiavelli)
23
+ - Second Treatise of Government
 
 
24
 
25
+ It's meant to be an interesting novelty, showing off training on a specific domain. I also forgot to include any generalist assistant data so it's not likely to be good at much else besides answering philosophy questions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  ## Training procedure
28
 
 
43
  - lr_scheduler_warmup_steps: 136
44
  - num_epochs: 6
45
 
 
 
 
 
46
  ### Framework versions
47
 
48
  - Transformers 4.45.0.dev0