|
from typing import Dict, Any, List |
|
|
|
import ast |
|
import tarfile |
|
import torch |
|
import requests |
|
import numpy as np |
|
from ast import AsyncFunctionDef, ClassDef, FunctionDef, Module |
|
from transformers import Pipeline |
|
from tqdm.auto import tqdm |
|
|
|
|
|
def extract_code_and_docs(text: str): |
|
""" |
|
The method for extracting codes and docs in text. |
|
:param text: python file. |
|
:return: codes and docs set. |
|
""" |
|
code_set = set() |
|
docs_set = set() |
|
root = ast.parse(text) |
|
for node in ast.walk(root): |
|
if not isinstance(node, (AsyncFunctionDef, FunctionDef, ClassDef, Module)): |
|
continue |
|
docs = ast.get_docstring(node) |
|
node_without_docs = node |
|
if docs is not None: |
|
docs_set.add(docs) |
|
|
|
node_without_docs.body = node_without_docs.body[1:] |
|
if isinstance(node, (AsyncFunctionDef, FunctionDef)): |
|
code_set.add(ast.unparse(node_without_docs)) |
|
|
|
return code_set, docs_set |
|
|
|
|
|
def extract_readmes(file_content): |
|
""" |
|
The method for extracting readmes. |
|
:param lines: readmes. |
|
:return: readme sentences. |
|
""" |
|
readmes_set = set() |
|
lines = file_content.split('\n') |
|
for line in lines: |
|
line = line.replace("\n", "").strip() |
|
readmes_set.add(line) |
|
|
|
return readmes_set |
|
|
|
|
|
def extract_requirements(file_content): |
|
""" |
|
The method for extracting requirements. |
|
:param lines: requirements. |
|
:return: requirement libraries. |
|
""" |
|
requirements_set = set() |
|
lines = file_content.split('\n') |
|
for line in lines: |
|
line = line.replace("\n", "").strip() |
|
try: |
|
if " == " in line: |
|
splitLine = line.split(" == ") |
|
else: |
|
splitLine = line.split("==") |
|
requirements_set.add(splitLine[0]) |
|
except: |
|
pass |
|
|
|
return requirements_set |
|
|
|
|
|
def get_metadata(repo_name, headers=None): |
|
""" |
|
The method for getting metadata of repository from github_api. |
|
:param repo_name: repository name. |
|
:param headers: request headers. |
|
:return: response json. |
|
""" |
|
api_url = f"https://api.github.com/repos/{repo_name}" |
|
tqdm.write(f"[+] Getting metadata for {repo_name}") |
|
try: |
|
response = requests.get(api_url, headers=headers) |
|
response.raise_for_status() |
|
return response.json() |
|
except requests.exceptions.HTTPError as e: |
|
tqdm.write(f"[-] Failed to retrieve metadata from {repo_name}: {e}") |
|
return {} |
|
|
|
|
|
def extract_information(repos, headers=None): |
|
""" |
|
The method for extracting repositories information. |
|
:param repos: repositories. |
|
:param headers: request header. |
|
:return: a list for representing the information of each repository. |
|
""" |
|
extracted_infos = [] |
|
for repo_name in tqdm(repos, disable=len(repos) <= 1): |
|
|
|
metadata = get_metadata(repo_name, headers=headers) |
|
repo_info = { |
|
"name": repo_name, |
|
"codes": set(), |
|
"docs": set(), |
|
"requirements": set(), |
|
"readmes": set(), |
|
"topics": [], |
|
"license": "", |
|
"stars": metadata.get("stargazers_count"), |
|
} |
|
if metadata.get("topics"): |
|
repo_info["topics"] = metadata["topics"] |
|
if metadata.get("license"): |
|
repo_info["license"] = metadata["license"]["spdx_id"] |
|
|
|
|
|
download_url = f"https://api.github.com/repos/{repo_name}/tarball" |
|
tqdm.write(f"[+] Downloading {repo_name}") |
|
try: |
|
response = requests.get(download_url, headers=headers, stream=True) |
|
response.raise_for_status() |
|
except requests.exceptions.HTTPError as e: |
|
tqdm.write(f"[-] Failed to download {repo_name}: {e}") |
|
continue |
|
|
|
|
|
tqdm.write(f"[+] Extracting {repo_name} info") |
|
with tarfile.open(fileobj=response.raw, mode="r|gz") as tar: |
|
for member in tar: |
|
|
|
if member.name.endswith(".py") and member.isfile(): |
|
try: |
|
file_content = tar.extractfile(member).read().decode("utf-8") |
|
|
|
code_set, docs_set = extract_code_and_docs(file_content) |
|
repo_info["codes"].update(code_set) |
|
repo_info["docs"].update(docs_set) |
|
except UnicodeDecodeError as e: |
|
tqdm.write( |
|
f"[-] UnicodeDecodeError in {member.name}, skipping: \n{e}" |
|
) |
|
except SyntaxError as e: |
|
tqdm.write(f"[-] SyntaxError in {member.name}, skipping: \n{e}") |
|
|
|
elif (member.name.endswith("README.md") or member.name.endswith("README.rst")) and member.isfile(): |
|
try: |
|
file_content = tar.extractfile(member).read().decode("utf-8") |
|
|
|
readmes_set = extract_readmes(file_content) |
|
repo_info["readmes"].update(readmes_set) |
|
except UnicodeDecodeError as e: |
|
tqdm.write( |
|
f"[-] UnicodeDecodeError in {member.name}, skipping: \n{e}" |
|
) |
|
except SyntaxError as e: |
|
tqdm.write(f"[-] SyntaxError in {member.name}, skipping: \n{e}") |
|
|
|
elif member.name.endswith("requirements.txt") and member.isfile(): |
|
try: |
|
file_content = tar.extractfile(member).read().decode("utf-8") |
|
|
|
requirements_set = extract_requirements(file_content) |
|
repo_info["requirements"].update(requirements_set) |
|
except UnicodeDecodeError as e: |
|
tqdm.write( |
|
f"[-] UnicodeDecodeError in {member.name}, skipping: \n{e}" |
|
) |
|
except SyntaxError as e: |
|
tqdm.write(f"[-] SyntaxError in {member.name}, skipping: \n{e}") |
|
|
|
extracted_infos.append(repo_info) |
|
|
|
return extracted_infos |
|
|
|
|
|
class RepoPipeline(Pipeline): |
|
""" |
|
A custom pipeline for generating series of embeddings of a repository. |
|
""" |
|
|
|
def __init__(self, github_token=None, *args, **kwargs): |
|
""" |
|
The initial method for pipeline. |
|
:param github_token: github_token |
|
:param args: args |
|
:param kwargs: kwargs |
|
""" |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
self.github_token = github_token |
|
if self.github_token: |
|
print("[+] GitHub token set!") |
|
else: |
|
print( |
|
"[*] Please set GitHub token to avoid unexpected errors. \n" |
|
"For more info, see: " |
|
"https://docs.github.com/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token" |
|
) |
|
|
|
def _sanitize_parameters(self, **pipeline_parameters): |
|
""" |
|
The method for splitting parameters. |
|
:param pipeline_parameters: parameters |
|
:return: different parameters of different periods. |
|
""" |
|
|
|
preprocess_parameters = {} |
|
if "github_token" in pipeline_parameters: |
|
preprocess_parameters["github_token"] = pipeline_parameters["github_token"] |
|
|
|
|
|
forward_parameters = {} |
|
if "max_length" in pipeline_parameters: |
|
forward_parameters["max_length"] = pipeline_parameters["max_length"] |
|
|
|
|
|
postprocess_parameters = {} |
|
return preprocess_parameters, forward_parameters, postprocess_parameters |
|
|
|
def preprocess(self, input_: Any, github_token=None) -> List: |
|
""" |
|
The method for "preprocess" period. |
|
:param input_: the input. |
|
:param github_token: github_token. |
|
:return: a list about repository information. |
|
""" |
|
|
|
if isinstance(input_, str): |
|
input_ = [input_] |
|
|
|
|
|
headers = {"Accept": "application/vnd.github+json"} |
|
token = github_token or self.github_token |
|
if token: |
|
headers["Authorization"] = f"Bearer {token}" |
|
|
|
|
|
extracted_infos = extract_information(input_, headers=headers) |
|
return extracted_infos |
|
|
|
def encode(self, text, max_length): |
|
""" |
|
The method for encoding the text to embedding by using UniXcoder. |
|
:param text: text. |
|
:param max_length: the max length. |
|
:return: the embedding of text. |
|
""" |
|
assert max_length < 1024 |
|
|
|
|
|
tokenizer = self.tokenizer |
|
tokens = ( |
|
[tokenizer.cls_token, "<encoder-only>", tokenizer.sep_token] |
|
+ tokenizer.tokenize(text)[: max_length - 4] |
|
+ [tokenizer.sep_token] |
|
) |
|
tokens_id = tokenizer.convert_tokens_to_ids(tokens) |
|
source_ids = torch.tensor([tokens_id]).to(self.device) |
|
token_embeddings = self.model(source_ids)[0] |
|
|
|
|
|
sentence_embeddings = token_embeddings.mean(dim=1) |
|
|
|
return sentence_embeddings |
|
|
|
def generate_embeddings(self, text_sets, max_length): |
|
""" |
|
The method for generating embeddings of a text set. |
|
:param text_sets: text set. |
|
:param max_length: max length. |
|
:return: the embeddings of text set. |
|
""" |
|
assert max_length < 1024 |
|
|
|
|
|
return torch.zeros((1, 768), device=self.device) \ |
|
if not text_sets \ |
|
else torch.cat([self.encode(text, max_length) for text in text_sets], dim=0) |
|
|
|
def _forward(self, extracted_infos: List, max_length=512, st_progress=None) -> List: |
|
""" |
|
The method for "forward" period. |
|
:param extracted_infos: the information of repositories. |
|
:param max_length: max length. |
|
:return: the output of this pipeline. |
|
""" |
|
model_outputs = [] |
|
|
|
num_texts = sum( |
|
len(x["codes"]) + len(x["docs"]) + len(x["requirements"]) + len(x["readmes"]) for x in extracted_infos) |
|
with tqdm(total=num_texts) as progress_bar: |
|
|
|
for repo_info in extracted_infos: |
|
repo_name = repo_info["name"] |
|
info = { |
|
"name": repo_name, |
|
"topics": repo_info["topics"], |
|
"license": repo_info["license"], |
|
"stars": repo_info["stars"], |
|
} |
|
progress_bar.set_description(f"Processing {repo_name}") |
|
|
|
|
|
tqdm.write(f"[*] Generating code embeddings for {repo_name}") |
|
code_embeddings = self.generate_embeddings(repo_info["codes"], max_length) |
|
info["code_embeddings"] = code_embeddings.cpu().numpy() |
|
info["mean_code_embedding"] = torch.mean(code_embeddings, dim=0, keepdim=True).cpu().numpy() |
|
progress_bar.update(len(repo_info["codes"])) |
|
if st_progress: |
|
st_progress.progress(progress_bar.n / progress_bar.total) |
|
|
|
|
|
tqdm.write(f"[*] Generating doc embeddings for {repo_name}") |
|
doc_embeddings = self.generate_embeddings(repo_info["docs"], max_length) |
|
info["doc_embeddings"] = doc_embeddings.cpu().numpy() |
|
info["mean_doc_embedding"] = torch.mean(doc_embeddings, dim=0, keepdim=True).cpu().numpy() |
|
progress_bar.update(len(repo_info["docs"])) |
|
if st_progress: |
|
st_progress.progress(progress_bar.n / progress_bar.total) |
|
|
|
|
|
tqdm.write(f"[*] Generating requirement embeddings for {repo_name}") |
|
requirement_embeddings = self.generate_embeddings(repo_info["requirements"], max_length) |
|
info["requirement_embeddings"] = requirement_embeddings.cpu().numpy() |
|
info["mean_requirement_embedding"] = torch.mean(requirement_embeddings, dim=0, |
|
keepdim=True).cpu().numpy() |
|
progress_bar.update(len(repo_info["requirements"])) |
|
if st_progress: |
|
st_progress.progress(progress_bar.n / progress_bar.total) |
|
|
|
|
|
tqdm.write(f"[*] Generating readme embeddings for {repo_name}") |
|
readme_embeddings = self.generate_embeddings(repo_info["readmes"], max_length) |
|
info["readme_embeddings"] = readme_embeddings.cpu().numpy() |
|
info["mean_readme_embedding"] = torch.mean(readme_embeddings, dim=0, keepdim=True).cpu().numpy() |
|
progress_bar.update(len(repo_info["readmes"])) |
|
if st_progress: |
|
st_progress.progress(progress_bar.n / progress_bar.total) |
|
|
|
|
|
info["mean_repo_embedding"] = np.concatenate([ |
|
info["mean_code_embedding"], |
|
info["mean_doc_embedding"], |
|
info["mean_requirement_embedding"], |
|
info["mean_readme_embedding"] |
|
], axis=0).reshape(1, -1) |
|
|
|
info["code_embeddings_shape"] = info["code_embeddings"].shape |
|
info["mean_code_embedding_shape"] = info["mean_code_embedding"].shape |
|
info["doc_embeddings_shape"] = info["doc_embeddings"].shape |
|
info["mean_doc_embedding_shape"] = info["mean_doc_embedding"].shape |
|
info["requirement_embeddings_shape"] = info["requirement_embeddings"].shape |
|
info["mean_requirement_embedding_shape"] = info["mean_requirement_embedding"].shape |
|
info["readme_embeddings_shape"] = info["readme_embeddings"].shape |
|
info["mean_readme_embedding_shape"] = info["mean_readme_embedding"].shape |
|
info["mean_repo_embedding_shape"] = info["mean_repo_embedding"].shape |
|
|
|
model_outputs.append(info) |
|
|
|
return model_outputs |
|
|
|
def postprocess(self, model_outputs: List, **postprocess_parameters: Dict) -> List: |
|
""" |
|
The method for "postprocess" period. |
|
:param model_outputs: the output of this pipeline. |
|
:param postprocess_parameters: the parameters of "postprocess" period. |
|
:return: model output. |
|
""" |
|
return model_outputs |
|
|